The Google Lunar XPRIZE

Be the first team to land a spacecraft on the Moon, travel at least 500 meters, transmit HD images and video back to Earth, and you’ve won yourself $20 million. Oh, and you also have to do this 90%-funded by private investment and do it by the end of 2017. That’s the mission for the Google Lunar XPRIZE.

XPRIZE logo

The XPRIZE is the name of various competitions organized by the non-profit XPRIZE Foundation.

The XPRIZE mission is to bring about “radical breakthroughs for the benefit of humanity” through incentivized competition. We foster high‐profile competitions that motivate individuals, companies and organizations across all disciplines to develop innovative ideas and technologies that help solve the grand challenges that restrict humanity’s progress.

One of the most famous XPRIZE competitions was the Ansari XPrize. In 2004, Mojave Aerospace Ventures took that $10 million prize with their SpaceShipOne, after they became the first team to “build a reliable, reusable, privately financed, manned spaceship capable of carrying three people to 100 kilometers above the Earth’s surface twice within two weeks”. The prize was a major step forward for the development of a private space industry. A few other XPRIZEs have included developing super-efficient automobiles, solutions for cleaning the ocean after oil spills, improving sensor systems for health care services, and to improve our understanding of ocean acidification.

Google Lunar XPRIZE

The Google Lunar XPRIZE is the biggest competition yet, and sets-out to”ignite a new era of planetary exploration by lowering the cost to explore and capturing and inspiring the imagination of a new generation.” More than thirty teams initially registered for the lunar competition. Of those, sixteen participated in all of the required registration activities. But as of January 1st, 2017, the pool was reduced by another eleven. Five teams currently remain, all of which have active contracts to launch to the Moon this year. Those teams are:

SpaceIL (Israel)

SpaceIL was the first team to secure a launch contract. They plan to land their “hopper” craft on the Moon, then fly–in a single ‘hop’–the required 500 meters and land again to secure the prize.

Moon Express (United States)

Moon Express was the first country to secure their government’s authorization to operate on the lunar surface. They intend to launch their “hopper” craft from New Zealand in late 2017.

Synergy Moon (International)

Synergy Moon isn’t contracting with a launch provider for their launch, they’re doing it themselves thanks to Interorbital Systems being a part of the team. Their launch is expected to take place from the Pacific Ocean, off of the coast of California, in the second half of 2017.

Team Indus (India)

Team Indus is planning on launching their adorable 5kg rover, ECA, on December 28 of this year. ECA will include science instruments and cameras from the French national space agency: CNES.

Team Indus's ECA rover

Team Indus’s ECA rover – Source: Team Indus

Hakuto (Japan)

Hakuto’s rover is hitching a ride on the same lander as Team Indus, and boasts some big “partnerships, including au by KDDI, Suzuki, rock band Sakanaction, and a longterm Moon-resources-exploration plan with the Japanese space agency JAXA“.

The Prize

The first team to pull this amazing feat off will earn themselves the $20 million grand prize. In addition to the grand prize, the second place finisher will receive a respectable $5 million. Also, Google has handed out over $5 million in Milestone Prizes for teams (former and current) that have accomplished various important steps to make the mission possible.

Thanks to the Google Lunar XPRIZE, 2017 is set to be an exciting year for private space exploration–The New Space Race is on.

If you’d like to learn more about the Google Lunar XPRIZE, check out the excellent documentary series: Moonshot.

Luna 9 – The First Lunar Soft-Landing

The Soviets claimed many firsts in their space race with the United States. First person in space (and orbit), first woman in space, first satellite in orbit. Most would agree, however, that the United States accomplished the biggest first by being the first (and to this day, only) to land humans on the Moon. But the Soviet space program did claim a important lunar firsts of their own: the first lunar fly-by, the first pictures of the far side of the Moon, and the first soft-landing of a probe on the Moon’s surface.

Luna 9 model

Luna 9 model – Source: NASA.gov

On February 3, 1966, the Soviet spacecraft, Luna 9, completed its 3-day journey to the Moon and landed safely on the lunar surface. This ‘soft-landing’ (as in: not a crash-landing) marked the first time a human-made craft survived a landing on any body other than Earth. The successful landing was accomplished by a number of systems that all had to work flawlessly: inflation of an airbag system to cushion the impact, the retrorocket burn to slow the craft, and the deployment of a contact sensor to determine the precise altitude above the Moon. At an altitude of 5 meters, the contact sensor was triggered: engines were shut off and the landing capsule was ejected. Though the craft’s speed was reduced significantly, it still impacted the Moon at a velocity of 22 km/hr (13.7 miles per hour). The airbags allowed the capsule to safely bounce several times before it came to rest.

Following landing and an approximately four-minute pause, four petals that served as the craft’s shell unfolded and stabilized the probe the ground. Antennas were deployed and the craft’s television camera began recording the lunar landscape, capturing the first views ever seen from the surface of the Moon. In addition to the images and radiation readings, the landing also disproved models that suggested that the Moon was covered in a thick layer of dust that would cause any craft (and eventually, persons) who landed there to sink.

One of the first images taken from the Moon's surface

One of the first images taken from the Moon’s surface – Source: Smithsonian National Air and Space Museum

Luna 9’s batteries lasted for three days after landing, during which the craft was able to record a number of panoramic images and beam them back to Earth.

Joddrell Bank, the British observatory located at the University of Manchester, had been paying close attention to the race between the Soviets and the United States. Scientists there not only tracked Luna 9’s progress, but they also recognized the type of signal that the craft was beaming back. They deployed the correct receiving equipment and were able to acquire the lunar images and publish them before the Soviets even managed to see them. There’s still debate as to whether the Soviet scientists let this happen on purpose or not.

While the Soviets soft-landed their craft first, the United States wasn’t far behind. Three months after Luna 9, the US landed Surveyor 1 on the Moon’s surface. Various robots continued to explore the Moon, paving the way for the humans that followed them. After the United States stopped sending astronauts to the Moon in 1972, the next soft-landing wouldn’t occur until 2013, when the Chinese lander Chang’e-3 brought the rover Yutu to explore our celestial neighbor.

Galileo Spacecraft: First Orbiter of Jupiter

Artist rendering of Galileo arriving at Jupiter

Artist rendering of Galileo arriving at Jupiter – Credit: NASA

Space Shuttle Atlantis carried a special payload during its STS-34 mission. Commander Don Williams and crew transported the Galileo spacecraft into Earth orbit, from which point it was launched on a years-long voyage to Jupiter. Galileo would become the first spacecraft to orbit an outer planet and would go on to reveal fascinating views of the gas giant and its moons, as well as make monumental discoveries about the nature of the Jovian system.


Quick Facts:

  • Launch Date: October 18, 1989, Shuttle Atlantis STS-34
  • Primary Mission: October ’89 to December ’97.
  • Extended Missions: 3, from ’97 to ’03.
  • Number of Jupiter orbits: 34
  • Total distance traveled during mission: 4,631,778,000 km (approx 2.8 billion miles)
  • Mission End: September 21, 2003

Getting Galileo to Jupiter

Work on the Galileo craft began in 1977, after the exploration of Jupiter was listed as the number one priority in the Planetary Science Decadal Survey published in 1968. Fly-bys of the massive planet were conducted by the twin Pioneer 10 and 11 and Voyager 1 and 2 spacecrafts, but Galileo was set to do more than just perform a fly-by. It would launch an instrument-laden probe into Jupiter’s atmosphere, and then continue to orbit the planet for years. This mission would provide knowledge of the Jupiter system that could hardly even be imagined.

Galileo deploying from Shuttle Atlantis

Galileo deploying from Shuttle Atlantis – Credit: NASA

Galileo suffered a number of postponements. The first planned launch was to be from Space Shuttle Columbia in 1982, but development delays in the Space Shuttle program made that early of a launch unfeasible. The upside is that this gave the Galileo developers more time to work on the probe. Further planned launches and postponements occurred in 1984, 1985, and 1986.

As we all know, 1986 was the year of the Challenger disaster. Galileo would be put on hold during the 32-month hiatus that followed the tragedy, as every detail of the Shuttle program was examined and made safer. Galileo was originally planned to be attached to a liquid hydrogen-fueled Centaur-G booster; however, new safety protocols following Challenger prohibited the booster from being carried in the Space Shuttle’s payload bay. Mission designers had to reconsider how they would get Galileo from the Shuttle’s low Earth orbit to Jupiter. They decided on employing a solid-fuel Inertial Upper Stage booster (IUS). Whereas the Centaur-G would have propelled Galileo on a short and direct trajectory to Jupiter, the IUS would take longer and also require some technical gravitational slingshot maneuvers to make it to the gas giant.

Galileo was finally launched from Space Shuttle Atlantis, during mission STS-34 on October 18, 1989. From there, its IUS booster was started and it began its unique “VEEGA”, or Venus Earth Earth Gravity Assist, maneuvers.

Galileo spacecraft trajectory

Galileo spacecraft trajectory – Source: NASA

  • Galileo flew by Venus on February 10, 1990 at an altitude of 16,000 km (10,000 miles).
  • It then flew by Earth on December 8, 1990 at an altitude 960 km (597 miles).
  • Its trajectory took it near Asteroid Gaspra on October 29, 1991, coming within 1,601 km (1,000 miles).
  • Then it was back to another Earth fly-by on December 8, 1992, this time at an altitude of only 303 km (188 miles).
  • On its way back towards the outer solar system it flew by Asteroid Ida on August 28, 1993, coming within 2,400 km (1,400 miles) of the asteroid.

On its way to Jupiter, Galileo was positioned perfectly to observe the doomed Comet Shoemaker-Levy 9 as it impacted the planet. Pieces of the comet, having been torn into fragments by Jupiter’s immense tidal forces, impacted Jupiter from July 16 – 22, 1994, on the side facing away from Earth. Fortunately, Galileo had a prime view and was able to record the impact. Earth-based telescopes could only observe the impact sites as they rotated into view a few minutes afterwards.

In July, 1995, Galileo released its atmospheric probe component. For the next five months, the probe and orbiter continued their cruise to Jupiter. On December 7, 1995, Galileo had arrived. The orbiter and probe diverged onto their separate missions.

Atmospheric Probe

On December 7, 1995 Galileo’s atmospheric probe sliced into Jupiter’s atmosphere at 47.6 kilometers per second (106,000 miles per hour). As the atmosphere began to slow the probe, it deployed its drogue and main parachutes and dropped its heat shield to expose its scientific instruments. The probe began recording data and transmitting it up to the main Galileo spacecraft orbiting high above, which then re-transmitted the data to Earth. The probe recorded 58 minutes of data on Jupiter’s weather and atmosphere. Towards the end of its descent, the probe measured wind speeds of 724 kilometers per hour (450 miles per hour). The intense heat and pressure of Jupiter’s atmosphere melted and vaporized the probe less than an hour into its journey through Jupiter’s atmosphere.

Orbiter

While the atmospheric probe’s job was complete, the Galileo orbiter still had years of work left to do. The orbiter received its electric power from two radioisotope thermoelectric generators (RTGs). That may sound complicated, but it’s really quite simple. These RTGs carry the radioactive element plutonium-238. As the plutonium decays, it releases energy in the form of heat. That heat can then be easily turned into electricity through the Seebeck effect. This type of energy generation is long-lasting and reliable, as well as impervious to the cold temperatures and strong radiation fields of the Jupiter system. Galileo carried two of these RTGs, with a combined total of approximately 22.7 kilograms (50 pounds) of plutonium-238. While these radioactive components had been used on previous space missions, Galileo drew extra concern due to it being both carried by the Shuttle as well as the multiple Earth fly-bys. Anti-nuclear activists protested Galileo’s launch, fearing a malfunction could cause radiation poisoning for many thousands of people on Earth. NASA, however, argued that the probability of risk was extremely low.

Jupiter's ring system, as observed by Galileo

Jupiter’s ring system, as observed by Galileo – Credit: NASA/JPL/Cornell University

Galileo conducted slow orbits of Jupiter, approximately 2 months long each. The orbits were elongated, and designed to bring the spacecraft within different distances to Jupiter, which allowed it to sample different areas of the planet’s magnetosphere. These orbits were also designed to bring Galileo and its instruments into close fly-bys of Jupiter’s largest moons. Galileo completed its primary mission on December 7, 1997; however, the craft was still functioning extremely well and was able to continue taking measurements and sending valuable data back to Earth. Its mission was extended three times, operating until 2003.

Volcanic activity on Io, as observed by Galileo

Volcanic activity on Io, as observed by Galileo – Credit: NASA/JPL

The orbiter made several discoveries during its mission:

  • It discovered a possible ocean under Europa’s icy crust
  • Revealed Ganymede’s very own magnetic field, the only moon known to have this feature
  • Made the first observations of ammonia clouds in another planet’s atmosphere
  • It created hundreds of images of Jupiter’s large ‘Galilean moons’: Io, Callisto, Europa, and Ganymede
  • It measured the high levels of volcanic activity on Io

Sagan Criteria for Life

The late astronomer Carl Sagan devised a set of experiments to be conducted by Galileo during its first fly-by of Earth. The purpose of the experiments was to see if life could be easily detected from a spacecraft. The results of the experiments were published by Sagan in 1993, in the scientific journal Nature. The experiments were a success, as Galileo was easily able to detect what are referred to as the ‘Sagan requirements for life’. These include strong absorption of light at the red end of the spectrum (indicative of plant photosynthesis), absorption bands of molecular oxygen (again, indicative of plant life), the detection of methane in the atmosphere (a gas created by either volcanic or biological activity), and the detection of narrowband radio wave transmissions (could indicate a technologically advanced civilization).


By the end of its mission, Galileo had conducted 34 orbits of Jupiter and had made multiple fly-bys of Jupiter’s moons: Io 7 times, Callisto 8 times , Ganymede 8 times, Europa 11 times, and one fly-by of Amalthea.

Due in part to Galileo’s discovery of potential oceans on Europa (and possibly other Jovian moons), the decision was made to end the orbiter’s mission by sending it to the same fate as the atmospheric probe eight years prior. Rather than risk contaminating (with either Earth bacteria or radiation from the RTGs) one of Jupiter’s potentially life-harboring moons, Galileo would be ordered to impact Jupiter. On September 21, 2003, Galileo entered Jupiter’s atmosphere at 48.2 kilometers per second (108,000 mph).

The Galilean Moons: Jupiter's four largest satellites

The Galilean Moons: Jupiter’s four largest satellites – Credit: NASA/JPL/DLR

The total mission cost was approximately $1.4 billion USD, had more than 100 scientist partners from many different countries, and involved the work of more than 800 individuals.

In spite of postponements, an antenna that failed to fully deploy, and a tape recorder malfunction, Galileo performed magnificently. It was a mission that brought us up close and personal with our Solar system’s largest planet and provided us with a much more detailed understanding of the Jovian system. Galileo paved the way for future studies of Jupiter and its moons. Its successor, the Juno orbiter, is currently en route and arriving in July of 2016, and plans are being considered to investigate Europa’s oceans. Like the astronomer that the spacecraft took its name from, Galileo Galilei, this mission revealed new worlds that we previously could only distantly wonder about.

 

With The Supermoon Behind Us

Supermoon sinking into the atmosphere.
(International Space Station crewmember, André Kuipers, snapped this photo of the Supermoon sinking behind the Earth’s atmosphere.)
[Image credit: André Kuipers]

Did you get a chance to see this year’s “Supermoon“? Still confused as to what was so super about it, anyhow? Simply, the supermoon is the colloquial name for what is scientifically referred to as the perigee-syzygy moon. “The … what”, you ask? Don’t worry, it’s not as complicated as it sounds. The Moon orbits our Earth, not in a perfect circle, but in an ellipse. As a consequence of this, there are times the Moon is closer to the Earth and times it is further away. For any object orbiting the Earth, the part of its orbit that takes it furthest from our planet is called apogee. The closest point, perigee.

So now that we have perigee out of the way, “what was that other funny word again?” A syzygy,  (pronounced, Sizz-ih-gee), is a term used to refer to an astronomical event in which 3 celestial bodies form a straight line. In our case with the Moon, the bodies are the Sun, the Earth, and the Moon. You’re probably realizing that the Sun-Earth-Moon system experiences two syzygies each month; we call them the New Moon and the Full Moon.  The lunar month (29.53059 days) is defined as the period of time between two identical syzygies (Full Moon-to-Full Moon / New Moon-to-New Moon).

Putting it all together now: a perigee-syzygy Moon is the Full Moon or New Moon which coincides with its closest approach to Earth. Keep in mind, a New Moon at perigee could also be referred to as a supermoon; however, it’s unlikely to generate much attention because we can’t see the New Moon from Earth. “Well, of course. That makes sense!

So now that we know what a supermoon perigee-syzygy Moon is, let’s talk about what a perigee-syzygy Moon does; or, more importantly, doesn’t do. There is no correlation between perigee and major earthquake activity. There is certainly no correlation between perigee and human behaviour (well, except for the fact that when people start talking about supermoons, more people are likely to take a look at the Moon on that occasion). “But what about bigger tides?” Well, yes! Tides are greatest during Full and New Moons, and there is an increase in the tides when the Moon is closer to the Earth as well. Luckily, tidal forces are weak and even the few percent increase due to the perigee-syzygy isn’t going to create anything that will cause alarm.

But I heard the supermoon is super big and super bright!” While the perigee-syzygy Full Moon is what we can call the biggest and brightest Moon of the year, it’s such a small degree bigger and brighter that its really not noticeable. In fact, last night’s supermoon was only about 1% bigger/brighter than last month’s Full Moon. It did appear 14% larger than the smallest Moon of the year, but again, you’d have to be using some tools other than just your eyes to notice the difference.

An image showing the difference between perigee and apogee Full Moons.
(This image shows the difference in apparent size between a Full Moon at perigee and a Full Moon at apogee. Lined up next to each other, the difference looks quite large. In the sky by themselves, you’d be hard-pressed to notice the difference.)
[Image credit: Copyright © 2001-2012, Anthony Ayiomamitis]

Now, I purposely waited until after the Supermoon had passed to offer this explanation. Why? Because I didn’t want to discourage people from thinking they might see something special if they looked up at the Full Moon last night. It wasn’t easy to stay quiet for a couple of reasons. First of all, all of the ridiculous claims and fear that is generally associated with this event is hard to ignore — and in cases where real fear was involved, I did explain how there was nothing to worry about. The other reason it was difficult to not publish this before the event was that I didn’t want to entirely erase the hype that inevitably surrounds the “Supermoon”. Call it selfish, but I wanted people looking up at the sky last night — even if it was under some slight false pretenses. I want people looking up every night, and if some buzz on the internet can help make that happen, well then… good.

The truth is, the Moon is amazing whenever you can see it. The light of a Full Moon creates amazing shadows on our planet, and is a comforting companion to have overhead at night. Waxing and waning Moons are also beautiful, because they occur at an angle with the Sun in which the shadows and craters are much more pronounced.  And a New Moon (one we cannot see) offers us the darkest skies to observe the other billions of fascinating objects that are just above our heads.  All of which are… well… Super.


GRAIL: Ebb and Flow

Artist's Rendition of Grail Mission

Image credit: NASA/JPL-Caltech

Earlier this month, I gave a minor overview of NASA’s Gravity Recovery And Interior Laboratory (GRAIL) mission. I had mentioned that the two mirror-twin spacecraft that make up the mission were currently — and temporarily — dubbed GRAIL-A and GRAIL-B, with official names coming later in the month. Beginning last October, NASA appealed to elementary students to come up with replacement names for the spacecraft.

Over 11,000 students, from 45 states and several territories, participated in contest, making for stiff competition.

Ultimately, it was the 4th Grade students from Emily Dickinson Elementary school, in Bozeman, Montana, who were chosen as the nationwide winners of the naming competition, with their names of Ebb and Flow. The students arrived at their name by researching what the GRAIL mission was studying and how it worked. They learned how important the Moon is to our lives on Earth, and how the Moon’s gravity causes our high and low tides. They decided on Ebb and Flow, because the names represent both the Moon’s gravity and its effects on our home.

Congratulations Emily Dickinson 4th-Graders! Not only did you come up with great contest-winning names, you came up with names that will forever exist in the historical pages of the world’s exploration of space!

For more about GRAIL, check out these links:


Cosmic Paparazzi: Dione Flyby

Cassini flyby of Saturn moon Dione

(Click for full-size version)
[Image credit: NASA/JPL-Caltech/Space Science Institute]

NASA.gov – Flying past Saturn’s moon Dione, Cassini captured this view which includes two smaller moons, Epimetheus and Prometheus, near the planet’s rings.

Dione (698 miles, or 1,123 kilometers across) is closest to Cassini here and is on the left of the image. Potato-shaped Prometheus (53 miles, or 86 kilometers across) appears above the rings near the center top of the image. Epimetheus (70 miles, or 113 kilometers across) is on the right.

This view looks toward the northern, sunlit side of the rings from less than one degree above the ring plane. The view was acquired at a distance of approximately 67,000 miles (108,000 kilometers) from Dione. Image scale is 2,122 feet (647 meters) per pixel on Dione.


Earthrise Courtesy of KAGUYA

It’s been a busy few weeks and I have a lot of draft posts added to the list for publishing in the near future; everything from the origin of the Moon to NASA’s opening of its first solar-sail. In the mean-time, enjoy this wonderful video captured by JAXA’s SELENE (Selenological and Engineering Explorer) orbiter; also known as Kaguya.

(I recommend the highest HD resolution and full-screen, if your connection and hardware allows.)

The video was captured in November of 2007. After orbiting the Moon for one year and eight months, SELENE was purposely dropped out of lunar orbit and crashed into the lunar surface.

Total Lunar Eclipse

If you have clear skies, be sure to take the opportunity to view the total lunar eclipse of December 20/21, 2010. My forecast isn’t looking good, but I’m holding out hope that I’ll get a clear view and get some photographs of the event. The following image does a great job of detailing when to look, and what you can expect:
Total Lunar Eclipse of December 2010
*Note, the times listed on this image are for Alaskan time, which is 4 hours earlier than Eastern time.
I got the image from Mr. Eclipse who not only explains what you’re seeing, but provides a wealth of other information, including how to photograph it.

A lunar eclipse occurs when the Moon enters the shadow of Earth. This can only happen during a full moon, but not every full moon coincides with an eclipse. Why? Because the Moon’s orbit is inclined about 5.1° to the Earth. So a lunar eclipse will occur when a full moon also happens to be on the same plane, or 0°, as the Earth.

If you’re plagued by cloudy skies, you can still watch it and participate in a live chat, courtesy of NASA/JPL.

So there you have it, no excuses. If you miss this one and reside in the North America, you won’t have another chance until 2014.

Happy observing!