Beagle 2 Found

On June 2nd, 2003, a Soyuz rocket with a Fregat upper stage blasted off from the Baikonur Cosmodrome, in Kazakhstan. The rocket carried the European Space Agency’s Mars Express mission instruments on an exciting journey to Mars. After spending less than a couple hours in a 200km (124 mile) parking orbit around Earth, the Fregat fired again, propelling the spacecraft towards a Mars transfer orbit. After three minutes, Mars Express separated from the Fregat and began its sixth month trek to the red planet.1

Artist's impression of Beagle 2 lander. -  ESA/Denman productions

Artist’s impression of Beagle 2 lander. –
ESA/Denman productions

Mars Express consisted of two main components: the Mars Express orbiter and the Beagle 2 lander. The two components were to separate, with the former continuing to orbit, map and study the planet and the latter to drop into the thin Martian atmosphere, land, and conduct research from the surface. On Christmas morning in 2003, Beagle 2 dropped onto Mars’s surface and was never heard from again. Many attempts were made to communicate with the lander, but no response was forthcoming. By February 2004, with no communications received from the Beagle, it was officially declared lost. The Mars Express orbiter, however, was a success and has been capturing important data and wonderful images of Mars for over a decade now.

Fast forward twelve years to the end of 2014. Michael Croon, a former member of the Mars Express team, and other colleagues continue to sift through images produced by the HiRISE camera that’s aboard NASA’s Mars Reconnaissance Orbiter. Croon had requested images of the planned landing area through HiWish, a public suggestion page for HiRISE targets. Against any likely odds, Croon spotted something on the edge of the frame in one of the images he acquired. The contrast was low in the initial image and he wasn’t convinced his candidate was anything special. He requested additional imagery from the same location. In the new images, his candidate was a bright spot that appeared to move slightly between images. This was suggestive of being consistent with sunlight reflecting off of various parts of the Beagle 2. Some careful image clean-up work conducted by the HiRISE team provided even clearer views of the object in question, all but confirming that the Beagle 2 was finally found.

December 15, 2014 image taken by the Mars Reconnaissance Orbiter, showing what's believed to be the long-lost Beagle 2. -  NASA / JPL / Univ. of Arizona / Univ. of Leicester

December 15, 2014 image taken by the Mars Reconnaissance Orbiter, showing what’s believed to be the long-lost Beagle 2. –
NASA / JPL / Univ. of Arizona / Univ. of Leicester

Subsequent discussion and analysis of the images suggests that the Beagle 2 only partially deployed its petal-like solar panels. The communications antenna would only have been revealed after a full deployment, thus the suspected reason why Beagle 2 never sent a message confirming it’s landing.

Labelled grey-scale image identifies the lander, and its parachute and rear cover.

Labelled grey-scale image identifies the lander, and its parachute and rear cover. –
University of Leicester/ Beagle 2/NASA/JPL/University of Arizona

While it’s still a mystery as to the cause of the lander failing to deploy completely after landing, it is much relief to the team members that have spent the past 12 years wondering what had ever become of their precious lander.

  1. The Fregat coasted off into interplanetary space.

The Pioneer Plaque: Our Calling Card to the Cosmos

In 1972 and 1973, Pioneer 10 and 11, respectively, left planet Earth with one-way tickets out of the Solar System. These two pioneers (heh) explored Jupiter, Saturn, and their associated moons before heading out into the great unknown on an uncharted interstellar voyage. Each of them carried a plaque, dubbed the Pioneer Plaques, and that’s what this story is about.

Eric Burgess, science correspondent for the Christian Science Monitor, recognized that by being the first spacecraft designed to leave our Solar System, it too would be planet Earth’s emissary to the stars. He believed the Pioneers should contain a message from its creators, one that could serve as an introduction and greeting from any being that might make contact with the Pioneers thousands or millions or more years from now. This thought spawned the idea for what became the Pioneer plaques. Burgess approached Carl Sagan, who was at NASA’s Jet Propulsion Laboratory in Pasadena, CA, working in connection with the Mariner 9 program. Sagan was thrilled with the idea and agreed to promote the idea with NASA officials.

Two identical plaques were made–one for Pioneer 10 and one for Pioneer 11. They are 9 inches by 6 inches, .05 inches thick, and constructed of gold-anodized aluminum. They were constructed and engraved by Precision Engravers of California, a company that is still in business today and sells replica plaques. The design itself was created by Carl Sagan and Frank Drake, with the artistic help of Sagan’s then-wife Linda Salzman Sagan. NASA accepted the idea and their design, and received approval to have them flown aboard Pioneer 10 and 11. They would be attached to the craft’s antenna supports, positioned such that they would be protected from erosion caused by interstellar dust.

The design consists of a few different elements symbolizing humanity’s place within the galaxy, and information about our species.

The Pioneer Plaque

Beginning in the top-left is a schematic representing the hyperfine transition of  neutral hydrogen.Hyperfine transition of neutral hydrogen extracted from the Pioneer plaque

Wait! Don’t go! Give me a chance to try and unpack that gobbledygook for you. 

This piece of the plaque is actually kind of important, because it serves as a reference for the other elements of the plaque. For this explanation, consider that the electrons in atoms exist in one of two states: spin up and spin down. Hydrogen was chosen for the diagram due to it being the most abundant element in the Universe as well as one of the simplest, containing a single electron. Basically, the magnetic field of an electron can either be oriented parallel to the magnetic field of the atom’s nucleus, or it can be oriented in the opposite direction. These are the two states I referred to. The diagram shows both of these phases connected by a line that represents the transition–a hyperfine transition I might add–between these two states. When this occurs, a photon is emitted with a specific wavelength of about 21 centimeters and a frequency of 1420 MHz. A being that might one day come into contact with the plaque would hopefully understand the distance and frequency represented, for if they could they would then be able to use it as a reference for the other diagrams on the plaque.

Like, for example, the diagram of us.

Depiction of humans on the Pioneer plaque


Here, the plaque depicts a nude male and female human. To the right of the woman figure are hash marks indicating the top and bottom of her height. Between those marks is the symbol “| – – -“, which is the binary symbol for 8. The woman is 8 tall. 8 what, you’re asking? 8 feet? 8 inches? Remember when we created our scale using the hydrogen transition thingamajig, and came up with 21 centimeters? That’s right, the woman is 8 x 21 cm, which equals 168 cm (just a skosh over 5′ 6”). Make sense?

There have been claims made that the original drawing had the man and woman holding hands, but that a conscious decision was made to separate the two out of concern that an alien gazing upon the plaque would think of the two humans as a single being. There are also rumors that the original design included a more anatomically-correct woman body, but that single extra line needed to be erased to garner top NASA official authorization.

What a wonderful time to have been around JPL for those discussions. There’s a lot we can learn about ourselves within a debate on how to present ourselves to alien beings thousands or millions of years into the future.

Moving on…

Silhouette of the Pioneer spacecraft relative to the size of the humans.Behind us (the humans), there’s a silhouette of the Pioneer spacecraft, showing the relative size of humans to the craft. I guess this is there in case the aliens are too lazy to do the hydrogen transition conversion thing we just talked about.

At the bottom of the plaque, we have a depiction of our solar system and where Pioneer came from. Also, more hash marks. I hope the aliens realize that this time they’re supposed to be multiplying by 1/10th of the distance of Mercury’s orbit from the Sun, and not 21 cm like they were to do with the human models. If not, they’ll have a hard time finding us if they’re looking for tiny planets that have orbits mere hundreds of centimeters from their star. I really hope aliens enjoy puzzles.


The Solar System with the trajectory of the Pioneer spacecraft.


I also hope that by the time they see this part of the plaque that word hasn’t gotten to them about Pluto being downgraded to dwarf planet….

But ours is only one of millions of solar systems within our corner of the galaxy. Providing a map of our solar system won’t help them if they have no way to find it to begin with. That brings us to the next part of the plaque:


This schematic shows the location of Sol (our sun) relative to the center of the Milky Way and 14 pulsars. I’m going to spare you the technical details and give you the bare bones version. The length of the lines indicate the relative distance between the Sun and the various pulsars. The long binary numbers give the periods of the pulsars, basically their signature. One thing worth noting about the periods of the pulsars, is that their frequency will change over time. Knowing this, a being deciphering this part of the plaque would be able to not only figure out where in the galaxy the Pioneers originated from, but also when they left Earth. Depending on where the plaque is encountered, only some of the pulsars might be visible thus the redundancy of including 14. This should be enough to allow for triangulation back to us. There’s a 15th line coming out of the center of the figure (which, if you haven’t guessed already is where the Sun is located); it’s the long one pointing to the right. It shows the relative distance from the Sun to the center of the Milky Way galaxy.

So there you have it. The Pioneer Plaque: a representation of humans and their size, a celestial map to the place and time the craft and its plaque originated from, and a tool to use as a standard unit of measure to decode all of the details.

If only we put so much effort into the selfies we post of ourselves on Facebook.

A Space Discovery Milestone, as Kepler Confirms 1000th Exoplanet

Kepler Mission Logo

Kepler Mission logo

It was just a few years ago, and I was excitedly reporting to you the first few exoplanets that the NASA Kepler space instrument was detecting and verifying. In fact, it was almost exactly 4 years ago today that I was telling you about confirmed exoplanet find number 9. That exoplanet, Kepler-10b, was the first confirmed find of a rocky world outside of our own solar system, and at the time was the smallest exoplanet ever discovered, at 1.4 times the diameter of Earth. Then, at the end of that year, I was telling you about the first exoplanet located by Kepler in the “habitable zone”. And in a short period of time, I was telling you about dozens of more exoplanets being confirmed, and mini-planetary systems, and exoplanets that orbit two different stars.

Well since then, Kepler’s been hard at work confirming exoplanet after exoplanet. Today, that count has reached a milestone:

NASA’s Kepler Marks 1,000th Exoplanet Discovery, Uncovers More Small Worlds in Habitable Zones

1,000 confirmed other worlds, orbiting other stars. Let me put that significance into perspective: if you were born in 1988 or earlier, you are the exoplanet generation, for 1988 was the year the first exoplanet was confirmed. I don’t know about you, but that fact really resonates with me. It proclaims to me that I live in a fantastic moment of human history. I was alive when Earthlings first knew for certain that there were planets outside of our own Solar system. And in less than three decades, we’ve found over 1,000 more. There are worlds out there, and we’re alive precisely at the time to first know it. And what’s even cooler, at least eight of those are roughly the same size as our own world and orbit their host star in what’s referred to as the habitable zone.

Artist's depiction of the 8 Earthlike planets confirmed by Kepler.


The Kepler mission will always be one of the most exciting for me personally, and is expected to confirm thousands more exoplanets over the coming years. What a time to be alive!

If this is as interesting to you as it is to me, here are a couple of other articles posted about Kepler discoveries that I think you’ll particularly appreciate:

Exciting Kepler News – Part 1: Mini-Planetary System

Exciting Kepler News – Part 2: New Circumbinary Planets

Kepler Finds First Earth-Sized Planets

NASA's State of the Solar System

Here’s an excellent infographic that details NASA’s current Solar System (and beyond!) spacecraft missions. It lists every craft NASA out exploring various bodies and their current status.

Click the image to make it a little bigger.

State of the Solar System infographic

State of the Solar System infographic



New Horizons Awakens

If everything has gone according to its meticulous plan, by the time you are reading this NASA’s New Horizons spacecraft will have awoken from its electronic hibernation for the last time and begun its careful preparations to encounter Pluto in July of 2015.

Maybe I should back up for those that aren’t familiar with New Horizons, or just want a little recap:

New Horizons is the name of a NASA spacecraft and mission to complete a fly-by mission of Pluto and its moons, and then on to view other Kuiper-Belt objects. New Horizons will give us shiny new photos of our favorite dwarf planet and a wealth of other scientific data. It’s about time, too. I mean, just look at the current best image we have of what we–at least  used to–consider 1/9th of our solar system’s planetary awesomeness:

Pluto as imaged by Hubble in 2010.

Pluto as imaged by Hubble in 2010.

Yuck! And NASA was impressed enough to brag about these “most detailed and dramatic images ever taken of the distant dwarf planet“. I’m looking forward to which adjectives they’ll use when we get real images courtesy of New Horizons. But I digress.

On January 19, 2006, New Horizons lifted-off from its Cape Canaveral launchpad and screamed into the heavens. In fact, nothing before or since has left the Earth with such a sense of urgency. New Horizons holds the record for the fastest launch of any spacecraft. It left the Earth with a velocity of 36,373 miles per hour (58,356 kilometers/hour), fast enough to propel it not just out of the Earth’s orbit, but completely out of the solar system (referred to as a solar escape velocity).

Subsequently, New Horizons continued to voyage towards its 2015 encounter with Pluto. Along the way, it came within 1.4 million miles (2.3 million kilometers) of Jupiter, on February 28, 2007, and actually used its proximity to gain a gravity assist boost from the massive gas giant. This gave New Horizons a speed boost of about 9,000 miles per hour (14,000 kilometers/hour). Taking advantage of that graviational slingshot, the voyage to Pluto was shortened by three full years. Score! Free energy!

New Horizons zoomed along, passing Saturn’s orbit in June of 2008, Uranus’s in March of 2011, and then Neptune’s in August of this year.

Next up: Pluto.

Throughout its journey, New Horizons has gone through hibernation/wake cycles more than a dozen times, in fact, spending about 2/3 of its time in an electronic slumber. During hibernation, most of the craft’s systems are powered down or entered into an extremely low-functioning state. This “reduced wear and tear on the spacecraft’s electronics, it lowered operations costs and freed up NASA Deep Space Network tracking and communication resources for other missions”.  Today, however, New Horizons is waking for good.

Beginning in February, the main observation objectives begin. Around the beginning of May, New Horizons will be capturing images of Pluto exceeding the resolution that Hubble was able to produce. For the next two months, Pluto will become more accessible to all of the spacecraft’s instruments. The closest approach is projected for July 14, where New Horizons will be within 6,200 miles (10,000 kilometers) of Pluto. New Horizons’s Long Range Reconnaissance Imager (LORRI) is expected to capture images on the scale of 50 meters per pixel and accomplish a handful of other primary and secondary scientific objectives.

But wait, there’s more!

In addition to Pluto, New Horizons will be observing and recording images and data from Pluto’s known moons: Charon, Hydra, Nix, Styx, and Kerberos.

And that’s still not all. Remember how I mentioned that New Horizons is on a solar system escape trajectory? That means the craft is going to continue hurtling away from the Earth and Sun, away from Pluto, and out beyond the ends of our solar system and into intergalactic space. Included in the craft and mission design, is fly-by opportunities for one ore more Kuipier-Belt Objects (KBOs), the residents of the Kuiper Belt. If you’re not familiar with the Kuiper Belt, think asteroid belt except much larger but instead of rocky asteroids, these bodies consist more of frozen gases such as methane, ammonia, and water. (Some of the moons of our solar system are believed to be former residents of the Kuiper Belt, but that’s another story for another time.) The ability to complete this mission will depend on targetable candidates and remaining fuel supplies.

After all of this, New Horizons slips into the furthest reaches of the Sun’s influence, the fascinating realm known as the outer heliosphere, including the heliosheath and heliopause (again, another story/another time). If the craft is still alive at this point, New Horizons will continue the work of the Voyagers in mapping this interesting environment.

That’s it for today. Stay tuned for updates on this historical mission, and much, much more!



But that’s not all that will reawaken on December 6th.


Alien Footprints

Ever wondered about the track’s humanity has left on other worlds? If so, you’ll probably appreciate this infographic from Karl Tate and

View the list of extraterrestrial vehicles and distances traveled on other worlds.

Source All about our solar system, outer space and exploration

It’s a fairly intuitive image, so there’s not a lot I need to say. I’m jealous of the miles of tracks that were laid down by the Apollo astronauts in their moon buggies. Could you imagine?

I hope to live long enough to see just as many human-driven miles on Mars.

One More Thing About That Mars Object

The latest Curiosity status report indicates that the mysterious shiny object next to the rover “appears to be a shred of plastic material, likely benign, but it has not been definitively identified.”

To proceed cautiously, the team is continuing the investigation for another day before deciding whether to resume processing of the sample in the scoop. Plans include imaging of surroundings with the Mastcam.

A sample of sand and dust scooped up on Sol 61 remains in the scoop. Plans to transfer it from the scoop into other chambers of the sample-processing device were postponed as a precaution during planning for Sol 62 after the small, bright object was detected in an image from the Mast Camera (Mastcam).

I still attest that Curiosity should zap the thing with ChemCam.

(This might explain why I’m a blogger and not a NASA engineer.)

Curiosity Spots Something Curious

The Mars Curiosity rover tweeted (of course it tweets!) the following earlier this afternoon:


Today, Curiosity’s robotic arm reached down and scooped up its first sample of Martian dirt. Its cameras captured the historic moment, but caught something else too. There, among countless grains of reddish-orange sand, a single shimmering something caught the eyes of the image analysts back home on Earth.

Can you see it?
(Image credit: NASA/JPL-Caltech/MSSS)

How about now?
(Image credit: NASA/JPL-Caltech/MSSS and 46BLYZ)

Even clicking those images and looking at them full-size still doesn’t offer much more in the way of a better look. It’s definitely different than the soil and appears metallic, but that’s about all we can make out. NASA isn’t sure what it is yet either, which I think makes it more exciting. As a result they’ve temporarily halted anymore scooping:

Curiosity’s first scooping activity appeared to go well on Oct. 7. Subsequently, the rover team decided to refrain from using the rover’s robotic arm on Oct. 8 due to the detection of a bright object on the ground that might be a piece from the rover. Instead of arm activities during the 62nd Martian day, or sol, of the mission, Curiosity is acquiring additional imaging of the object to aid the team in identifying the object and assessing possible impact, if any, to sampling activities.

Curiosity even imaged the object with its ChemCam (Chemistry and Camera), but the raw image doesn’t offer much more than the MastCam1 images:

ChemCam view of unknown object
(Image Credit: NASA/JPL-Caltech/LANL)

It looks a bit less metallic in this grayscale image, perhaps more like plastic. To me it looks like a discarded shell from someone’s shrimp cocktail. (But that’s just me!)

Hey, did you know that ChemCam also has a built-in laser? It totally does. The purpose of the instrument is to zap rocks with a laser while the camera images the resulting plasma created from the vaporized rock. It can then use the images to analyze the composition and other information about that rock.

It’s my firm belief that Curiosity should zap whatever this unknown object is.  For science!

  1. I’m not even going to look this one up… they call it that because it’s the camera on the mast