OSIRIS-REx – A Sample Return Mission To Asteroid Bennu

Tomorrow, September 8, 2016, NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) is slated to launch from Cape Canaveral. It will take two years for the craft to reach its destination, the asteroid Bennu, where it will collect a sample and return it to Earth. The mission is a partnership between the University of Arizona, NASA’s Goddard Space Flight Center and the Lockheed Martin Company.

OSIRIS-REx Mission Logo - Source: NASA

OSIRIS-REx Mission Logo – Source: NASA

The OSIRIS-REx mission will send a spacecraft to 101955 Bennu (hereafter referred to simply as Bennu), a potentially Earth-impacting asteroid with an average diameter of 492 meters (1,614 ft; 0.306 mi). The mission has five primary science objectives (the mission, OSIRIS-REx, takes its name from an acronym of these objectives):

• Origins: Return and analyze a pristine carbon rich
asteroid sample
• Spectral Interpretation: Provide ground truth or
direct observations for telescopic data of the
entire asteroid population
• Resource Identification: Map the chemistry and
mineralogy of a primitive carbon rich asteroid
• Security: Measure the effect of sunlight on the
orbit of a small asteroid, known as the Yarkovsky
effect—the slight push created when the asteroid
absorbs sunlight and re-emits that energy as heat
• Regolith Explorer: Document the regolith (layer
of loose, outer material) at the sampling site at
scales down to the sub-centimeter

The $800-million (not including launch vehicle costs) mission budget will support the program through the return of the sample capsule in 2023, and two years of analysis and cataloging.

The spacecraft, built by Lockheed Martin Space Systems Company at its facility near Denver, Colorado, is 6.2 meters (20.25 feet) long with its solar arrays deployed, and 2.43 meters (8 feet) by 2.43 meters (8 feet) wide. It’s 3.15 meters (10.33 feet) tall. The total weight of the spacecraft, including fuel, is 2,110 kilograms (4,650 pounds)–unfueled, it weighs 880 kilograms (1,940 pounds). It boasts two solar panel generators that produce between 1,226 watts and 3,000 watts of electrical power depending on its distance from the Sun.

Following its September 8, 2016 launch, the spacecraft will undergo an Earth flyby in September of 2017, before arriving at Bennu in August of 2018. According to the program fact sheet, “[t]he spacecraft will begin a detailed survey of Bennu two months after slowing to encounter Bennu. The process will last over a year, and, as part of it, OSIRIS-REx will map potential sample sites. The sample is expected to occur in July of 2020, when the craft’s sampling arm will contact Bennu’s surface, release a burst of nitrogen gas, and capture the resulting particles. It’s expected to collect up between 60 grams (2 ounces) and 2 kilograms (4.4 pounds). After the sample is taken, OSIRIS-REx’s Sample Return Capsule will wait for a proper alignment with Earth for the return trip home. The sample is expected to re-enter Earth’s atmosphere on September 24, 2023–just over seven years after its 2016 launch.

OSIRIS-REx Survey Animation - Source: University of Arizona

OSIRIS-REx Survey Animation – Source: University of Arizona

Why Bennu?

In addition to Bennu being a good candidate to study the building blocks of our solar system (“An uncontaminated asteroid sample from a known source would enable precise analyses, revolutionizing our understanding of the early solar system, and cannot be duplicated by spacecraft-based instruments or by studying meteorites“), I mentioned above that Bennu is a “potentially Earth-impacting asteroid”. The chances of Bennu impacting Earth are slim–0.037%, and that’s not even until the period between 2175 – 2196–but it still serves as a good model to use to understand both the hazards and resources that coincide with near-Earth asteroids.

Here’s to a successful launch tomorrow, and a successful mission over the next seven years!

Godspeed OSIRIS-REx! Ad Astra!

Want more information on the mission? The NASA Press Kit has a wealth of information.

Ceres–Either the Most or Second-Most Popular Dwarf Planet

It has been nearly a decade since the International Astronomical Union (IAU) formally defined the word ‘planet’, resulting in the reclassification of Pluto as a ‘dwarf planet’. Some people still remain upset about the decision, considering the new classification as a demotion. If you roll with the kinds of people that I do, battle-lines have been drawn around the issue and many a friendship have been lost in the process. I don’t want to rekindle those debates (this is likely inevitable, however, as Pluto will be in the news quite a bit in the coming months as New Horizons is finally about to have its encounter with the dwa… whatever-you-want-to-call-it), so let’s take a look at a dwarf planet that appears to have finally found comfort in its classification: Ceres.

Color view of Ceres as imaged by Hubble in 2004 - Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI)

Color view of Ceres as imaged by Hubble in 2004 – Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI)

If you thought Pluto’s designation was complicated and controversial, just wait until you Ceres’s story.

Ceres has had a bit of an identity crisis of its own. Italian astronomer Giuseppe Piazzi discovered Ceres on New Years Day, 1801. He at first thought it was a star, but observed its movements against the stellar backdrop over the course of a few days and determined it to be a planet. He took a conservative approach in his announcement however, by referring to it as a comet.

I have announced this star as a comet, but since it shows no nebulosity, and moreover, since it had a slow and rather uniform motion, I surmise that it could be something better than a comet. However, I would not by any means advance publicly this conjecture. – Giuseppe Piazzi in a letter to fellow Italian astronomer Barnaba Oriani

With the help of other astronomers and using a method for calculating orbits developed by Carl Friedrich Gauss, it was confirmed that the object was not a comet, but in fact some sort of small planet. German astronomer Johann Bode had been promoting his hypothesis that planets orbited their host stars at distances that could predicted by mathematics. This hypothesis predicted a planet should exist between Mars and Jupiter. When Bode heard news of Piazzi’s discovery of an object at precisely that location, he rushed to announce that the missing planet had been located and even went as far as to name it himself. The name he gave: Juno. Piazzi, however, had taken the liberty as the new planet’s discoverer to give it the name ‘Ceres Ferdinandea’, honoring the patron goddess of Sicily and King Ferdinand of Bourbon. Piazzi rightfully objected to Bode’s stake on naming rights:

“If the Germans think they have the right to name somebody else’s discoveries they can call my new star the way they like: as for me I will always keep it the name of Cerere and I will be very obliged if you and your colleagues will do the same.” Piazzi in a letter to prominent astronomer and editor of scientific journals, Franz Xaver von Zach.

Piazzi’s name ultimately won out, though it was shortened to its currently-accepted name: Ceres.

"Giuseppe Piazzi" by F. Bordiga - Image from Smithsonian Institute Library

“Giuseppe Piazzi” by F. Bordiga – Image from Smithsonian Institute Library

After more objects were discovered orbiting in the same area, Sir William Herschel, in 1802, labeled these new objects, including Ceres, as asteroids (though the term asteroid, which means “star-like”, wasn’t commonly accepted until the early 1900s).

So thus, Ceres became the first, and largest, of the asteroids that orbit between Mars and Jupiter in a loose collection that we collectively refer to as the asteroid belt. But Ceres’s identity crisis wasn’t over just yet. Ceres was king of the asteroids until 2006, when that controversial IAU reclassified it as a dwarf planet. 1

From star, to comet, to planet, to asteroid, and finally to dwarf planet, Ceres looks to Pluto and remarks, “Psh… and you think you had it bad.”

Now that this introduction is out of the way, stay tuned for more information about Ceres. I’ll tell you about this fascinating world and get you up to speed on NASA’s Dawn spacecraft that will be arriving at Ceres in March of this year.

Animation of Ceres as viewed by the Dawn spacecraft on January 13, 2015. - Source: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

Animation of Ceres as viewed by the Dawn spacecraft on January 13, 2015. – Source: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

(Much of the information in this post came from Giuseppe Piazzi and the Discovery of Ceres, G. Foderà Serio, A. Manara, and P. Sicoli, published in Asteroids III by the University of Arizona Press)

  1. Since Pluto’s reclassification from planet to dwarf planet was viewed by many as a demotion, I wonder if it’s safe to refer to Ceres’s reclassification from asteroid to dwarf planet as a promotion.

Planetary Resources: From Sci-Fi to Reality

Image and text related to asteroid mining, from the book "11 Planets" by David A. Aguilar. Part of my kids' collection.

Image and text related to asteroid mining, from the children's educational book "11 Planets" by David A. Aguilar

Exciting (and historic!) news came to the world via the space-front yesterday. A major announcement was made by Bellevue, Washington-based, entrepreneurial start-up, Planetary Resources. Yesterday morning, at Seattle’s Museum of Flight, they unveiled their plans — plans which up until now had existed primarily in the realm of science fiction: they intend to commercially explore and mine asteroids robotically.

So who are Planetary Resources, and do they have the… well, planetary resources to pull off such a feat?

Planetary Resources emerged from the cocoon of an organization, Arkyd Astronautics, which was founded in late-2010 by Dr. Peter Diamandis (spaceflight entrepreneur, founder of the X Prize Foundation) and Eric Anderson (founder of the commercial spaceflight/space tourism corporation, Space Adventures). If not there at the start-up, Chris Lewicki (a former NASA Mars Phoenix Lander mission manager) quickly came on board as president and chief engineer. They began very quietly, offering employment for engineers and other professionals and presenting themselves as devoted to  developing “disruptive technologies for the commercial robotic exploration of space”.

Then there are the prominent billionaire investors and advisors, including according to their April 18 teaser press release:

Google’s Larry Page & Eric Schmidt, Ph.D.; film maker & explorer James Cameron; Chairman of Intentional Software Corporation and Microsoft’s former Chief Software Architect Charles Simonyi, Ph.D.; Founder of Sherpalo and Google Board of Directors founding member K. Ram Shriram; and Chairman of Hillwood and The Perot Group Ross Perot, Jr.

If there is a group of people with the potential, background, and resources to make this venture a reality, I think we’re looking at it.

So what’s the plan here; plop some robotic miners on an asteroid, bring home a lode of precious metals, and sell it for profit? Yes and no. They claim their primary purpose is based on their vision, not a return on investment. That said, the potential return on investment is huge, even if it takes one heck of an initial investment to get to that point. If that claimed motivation is truly the case, I have extremely high hopes for Planetary Resources. The greatest breakthroughs and advancements, those technological leaps that change our world, generally don’t emerge out of a profit-plan. They bloom from inspiration and a yearning to do big things, to follow one’s passions wherever they might take them, no matter the cost. This venture can afford to follow those dreams. And while they will face many challenges along the way, as long as they stay motivated by their vision I don’t foresee them limited into accomplishing it.

Here’s a quick run-down of their initial plan:

They will begin by launching and deploying a number of small space telescopes — already developed under the Arkyd name — that will find, observe, and characterize near-Earth asteroids (NEOs, Near Earth Objects). The first of these is slated to go up within the next 24 months. Once asteroid targets have been selected, probes will be sent to them to begin mining operations.

Interestingly, their first mining goal won’t be to see what precious metals they can extract; their first targeted material will be water and other materials that can be used as supplies in space operations (oxygen, nitrogen, etc.). When you consider the costs of launching supplies from Earth into space, it’s overwhelming. During the historic press conference, former NASA astronaut and Planetary Resources adviser, Tom Jones, pointed out that carrying a single liter of water to the International Space Station costs approximately $20,000 USD! With such tremendous shipping costs, there’s little difference in the cost of putting a kilogram of gold or a liter of water into space — virtually all of the cost is fuel to get into orbit. So with that idea, turning asteroids into supply depots would be extremely valuable, and drastically reduce the cost of space programs.

Planetary Resources logo.

This will also allow Planetary Resources, and other companies that might emerge between now and then, the opportunity to extract other natural resources to return to Earth. Asteroids hold the potential to make some of Earth’s rarest materials abundant, and acquiring them for use on Earth could rapidly transform our technology and infrastructure.

If you want to delve deeper into the hows and technical details of the project, you can check out the FAQ on Planetary Resources’s website and watch the archived webcast of their groundbreaking press conference.

Again, I feel highly inspired by all of this. I feel extremely lucky to live in a time when exciting things like this begin to grow legs (I hope things move quickly enough that I will live to see humans exist as a true space-faring species).  The challenges will be immense, and I don’t even want to consider the up-front economics involved, but I believe now is the time to take this step forward — and whatever Planetary Resources undertakes and no matter how far they go, we’re headed in the right direction.