SpaceX CRS-1 Update

As I mentioned yesterday, the private corporation SpaceX successfully launched its Dragon capsule en route to the International Space Station, on the first Commercial Resupply Services contract ever. I watched the video live and didn’t immediately notice any issues but, come to find out, the Falcon launch vehicle lost one of its engines on the way to orbit. Not to worry, however, as the other engines stepped up and compensated for the failure.

Check out this video of the catastrophic engine failure:

SpaceX released a mission update this morning, describing the event:

The Dragon spacecraft is on its way to the International Space Station this morning and is performing nominally following the launch of the SpaceX CRS-1 official cargo resupply mission from Cape Canaveral, Florida at 8:35PM ET Sunday, October 7, 2012.

Approximately one minute and 19 seconds into last night’s launch, the Falcon 9 rocket detected an anomaly on one first stage engine. Initial data suggests that one of the rocket’s nine Merlin engines, Engine 1, lost pressure suddenly and an engine shutdown command was issued. We know the engine did not explode, because we continued to receive data from it. Panels designed to relieve pressure within the engine bay were ejected to protect the stage and other engines. Our review of flight data indicates that neither the rocket stage nor any of the other eight engines were negatively affected by this event.

As designed, the flight computer then recomputed a new ascent profile in real time to ensure Dragon’s entry into orbit for subsequent rendezvous and berthing with the ISS. This was achieved, and there was no effect on Dragon or the cargo resupply mission.

Falcon 9 did exactly what it was designed to do. Like the Saturn V (which experienced engine loss on two flights) and modern airliners, Falcon 9 is designed to handle an engine out situation and still complete its mission. No other rocket currently flying has this ability.

It is worth noting that Falcon 9 shuts down two of its engines to limit acceleration to 5 g’s even on a fully nominal flight. The rocket could therefore have lost another engine and still completed its mission.

Dragon is expected to dock with the ISS on Wednesday.


SpaceX Launches Into the Commercial Spaceflight History Books

Or, “This time, for real”.

Back in May, SpaceX launched it’s Dragon capsule on top of their Falcon 9 rocket, on an intercept course with the International Space Station. This was a test to prove that SpaceX could take over the resupply of the ISS, as space becomes a commercial frontier. The test went perfectly and SpaceX was green-lighted as a contractor to deliver cargo to the ISS.

Tonight, the Dragon capsule screamed into the sky as part of the first of these Commercial Resupply Contract deliveries. Launch occurred right on schedule, and from the best I could tell watching the live webstream everything went flawlessly. A few minutes after launch, the Dragon capsule separated and reached orbit. Shortly after that, it deployed its solar arrays and will now cruise its way to the ISS.

This mission carries a full load of supplies for the station, but won’t be leaving empty; Dragon will be returning nearly 2,000 pounds (approximately twice the payload going up!) of equipment, astronaut blood and urine samples, and other items.

Dragon is set to dock with the ISS on Wednesday, again through the use of the station’s massive robotic arm as it was during the May trip.


SpaceX Launches Itself Towards History

SpaceX COTS 2 Mission Patch

SpaceX COTS 2 mission patch. Credit: SpaceX

Early Tuesday (5/22) morning, commercial spaceflight took an important step forward which, if everything goes as planned, will result in a historic bookmark in world history tomorrow morning. On May 22nd, 2012, at 3:44am (EST), the private aerospace company, SpaceX, became the first private organization to launch a space capsule filled with supplies on an intercept-course with the International Space Station. If everything checks out, NASA will give SpaceX the go-ahead to dock with the ISS. This first docking maneuver will be accomplished with the aid of the ISS’s robotic arm, which will grab a hold of the Dragon capsule and precisely mate it with the ISS. Subsequent missions will dock solely under Dragon’s power.

Based on my timezone and preferences, the launch was too early to wake up for, yet too late to stay up for. I set an alarm and woke up to watch the show. I watched the final couple of minutes of countdown before seeing that Falcon rocket gracefully take flight towards the stars. The launch feed was quite unlike the typical ones you’ll see coming out of NASA’s mission control. Where NASA’s controllers and announcers stoically announce data and rarely deviate from “strictly-business”, joy was ubiquitous following the Falcon launch and that emotion turned into sheer jubilation when the Dragon capsule separated from the Falcon and deployed its solar arrays.

SpaceX CEO and Chief Designer, Elon Musk, described the scene inside SpaceX headquarters:

 “People have really given it their all. We had most of the company gathered around SpaceX Mission Control. They are seeing the fruits of their labor and wondering if it is going to work. There is so much hope riding on that rocket. When it worked, and Dragon worked, and the solar arrays deployed, people saw their handiwork in space operating as it should. There was tremendous elation. For us it is like winning the Super Bowl.”

Regardless of the fact that I was too excited to fall asleep right away after turning off the NASA feed, I’m very glad I sacrificed some of my sleep to watch that historic scene unfold.

Early this morning, the Dragon capsule conducted a “fly-under” of the ISS, bringing it within 2.4 km of the station. A number of maneuvers and tests were conducted to ensure that the Dragon capsule was operating properly and could be completely controlled, in anticipation of tomorrow’s docking. Everything went flawlessly.

I’ll likely be sacrificing some more sleep to catch all the action.  You can too: Live coverage begins at 7:30am ET (3:30am Pacific), and the feed can be found at SpaceX’s website.