Wordless Wednesday 8 – Galaxy Cluster MS 0735

Galaxy Cluster MS 0735

[Click for larger version.]

(Composite Image – Hubble and Chandra Image Credit: NASAESA, CXC, STScI, and B. McNamara (University of Waterloo) / Very Large Array Telescope Image Credit: NRAO, and L. Birzan and team (Ohio University))

Cosmic Paparazzi: VV 340

VV 340 or Arp 302
[Click image for large desktop-sized version]
(Image Credit: X-ray NASA/CXC/IfA/D.Sanders et al; Optical NASA/STScI/NRAO/A.Evans et al)

NASA – VV 340, also known as Arp 302, provides a textbook example of colliding galaxies seen in the early stages of their interaction. The edge-on galaxy near the top of the image is VV 340 North and the face-on galaxy at the bottom of the image is VV 340 South. Millions of years later these two spirals will merge — much like the Milky Way and Andromeda will likely do billions of years from now. Data from NASA’s Chandra X-ray Observatory (purple) are shown here along with optical data from the Hubble Space Telescope (red, green, blue). VV 340 is located about 450 million light years from Earth.

Cosmic Paparazzi – Pismis 24

Pismis 24
(Click to biggify)

The small open star cluster Pismis 24 lies in the core of the NGC 6357 nebula in Scorpius, about 8,000 light-years away from Earth. The brightest object in the center of this image is designated Pismis 24-1 and was once thought to weigh as much as 200 to 300 solar masses. This would not only have made it by far the most massive known star in the galaxy, but would have put it considerably above the currently believed upper mass limit of about 150 solar masses for individual stars.

However, Hubble Space Telescope high-resolution images of the star show that it is really two stars orbiting one another that are each estimated to be 100 solar masses.

In addition, spectroscopic observations with ground-based telescopes further reveal that one of the stars is actually a tight binary that is too compact to be resolved even by Hubble. This divides the estimated mass for Pismis 24-1 among the three stars. Although the stars are still among the heaviest known, the mass limit has not been broken due to the multiplicity of the system.

The images of NGC 6357 were taken with Hubble’s Wide Field and Planetary Camera 2 in April 2002.

ImageCredit: NASA, ESA, and J. Maíz Apellániz (Instituto de Astrofísica de Andalucía, Spain)


Dying A Beautiful Death

The red giant AFGL 3068 is dying a beautiful death. Like all red giants, as they expand they spew their outer layers into space in a spherical shape. What’s unique about AFGL3068 however, is that it’s actually a binary star — two stars orbiting each other. Due to the orbits of the two stars, the material that’s ejected isn’t able to expand into a sphere, but in this amazingly perfect (and awesomely huge at 3 trillion kilometers!) spiral.

Look for yourself:

AFGL 3068

AFGL 3068

(Click image to embiggerify)

Thanks Hubble!