STS-1 Columbia – The Shuttle Program’s First Flight

It happened exactly 20 years after cosmonaut Yuri Gagarin became the first human in space. It was the first American manned spaceflight in six years, following the 1975 Apollo-Soyuz Test Project. It was the beginning of an era that ushered in a new generation of spaceflight technology.

STS-1 Mission Patch

STS-1 Mission Patch – Credit: NASA

It was STS-1, the first of more than 130 flights of the Space Shuttle program.

Shuttle Columbia was selected for the maiden voyage of the program. Not only was this the first crewed flight for the shuttle, it was the first flight period. Shuttle Enterprise had been utilized for flight (and landing) tests within the atmosphere, but wasn’t designed to be space-ready (including not having a heat shield for re-entry).

So Columbia was not only a mission, but a flight test in its own right. Her crew consisted of Commander John W. Young and pilot Robert L. Crippen. Young was already a veteran of the space program, having flown as pilot of the Gemini Program’s first manned flight (Gemini 3 – known around these parts as that time John Young smuggled a corned beef sandwich into space), served as commander of Gemini 10, was the command module pilot of Apollo 10 (the “dress rehearsal” for Apollo 11), and also walked on the Moon as commander of Apollo 16. This, however, would be Crippen’s first spaceflight. Both of these men were qualified test pilots, and STS-1 was one heck of a test flight.

At 7:00am on April 12, 1981, after a two-day delay, STS-1 lifted off from Launch Pad 39A at Kennedy Space Center–the same launch pad that took Neil Armstrong, Buzz Aldrin, and Michael Collins to the Moon, and is currently leased to SpaceX where it will serve to create a new type of spaceflight history. The launch was just as flawless as Launch Controller Chuck Hannon wished, when one minute and forty-five seconds prior to lift-off, he told the crew: “Smooth sailing, baby.”

STS-1 Columbia at launch on April 12, 1981

STS-1 Columbia at launch on April 12, 1981 – Credit: NASA

SHUTTLE LAUNCH CONTROL: T minus ten, nine, eight, seven, six, five, four, we’ve gone for main engine start, we have main engine start. And we have lift off of America’s first space shuttle, and the shuttle has cleared the tower.

Minutes later, Columbia and her crew were beginning the first of 37 total orbits to take place over the course of just more than two days. A new era was born, as we became a world with reusable space planes.




The primary mission of STS-1 was to conduct a general check-out of the Space Shuttle system, reach orbit successfully, and land safely back on Earth. Despite a few anomalies, which were recorded and solved for future flights, STS-1 was a smashing success. Orbiter Columbia performed amazingly and would be used for the next four shuttle missions until STS-6, when Challenger became the second orbiter in the fleet.

STS-1 was the solid first step in the three decades-long adventure that was the Space Shuttle program.

MISSE: Testing Materials In Space

If you had a really, really, really good telescope and took a peep at the International Space Station (which would be quite a feat for as quickly as it moves across the sky), you might notice what looks like a make-up kit or a watercolor palette dangling from the side of the station.

MISSE-3 just prior to retrieval during an STS-118 spacewalk.

MISSE-3 just prior to retrieval during an STS-118 spacewalk. – Credit: NASA

While some astronauts have taken their makeup into space, and some have found time to create art in orbit, they don’t tend to leave their supplies attached to the outside of the ISS. Ruling those out, instead what you’d probably be looking at is a Materials International Space Station Experiment (MISSE).

MISSE project specimens are placed onto trays and inserted into Passive Experiment Containers (PECs).

MISSE project specimens are placed onto trays and inserted into Passive Experiment Containers (PECs). – Credit: NASA

MISSE projects serve as a laboratory to test and study various material samples as they’re exposed to a space environment. Attached on the outside of the ISS, the specimens are simultaneously exposed to a variety of conditions that would be very difficult, if even possible, to mimic on Earth, including exposure to: atomic oxygen, various levels of radiation, vacuum, extreme temperatures, and zero gravity. While MISSE wasn’t the first project of this type–similar experiments had been carried out on Skylab, Mir, and NASA’s Long Duration Exposure Facility (LDEF)–it was the most formal and programmatic.

The first two MISSE projects were deployed in 2001, carried to the ISS via the Discovery crew of STS-105. They were originally planned to only be deployed for one year, but as a result of the grounding of the Shuttle program following the STS-107 Columbia disaster, they ended up staying in orbit for 3 years. There were a total of 8 MISSE experiments conducted by NASA, sometimes deployed in multiples and sometimes singly.

NASA astronaut Andrew Feustel swaps the MISSE PEC7A & 7B with PEC8

NASA astronaut Andrew Feustel swaps the MISSE PEC7A & 7B with PEC8 – Credit: NASA

The samples are loaded into trays and installed inside suitcase-like Passive Experiment Containers (PECs). When ready to be deployed, the PECs are carried outside the station during an EVA (extra vehicular activity), and fastened to the station’s exterior. The mounting location has changed throughout the program’s history.

Samples from MISSE 3 and 4 carried 8 million basil seeds that were then provided “to children for science experiments to stimulate interest in space science”. Other samples included paints, lubricants, fabrics, and solar cell technologies. In total, more than 4,000 samples have been tested through MISSE.

As part of NASA’s efforts to privatize routine space projects, MISSE was recently transferred to the private corporation Alpha Space:

MISSE is now a privatized, commercial facility owned and operated by Alpha Space with a permanent placement on the ISS. The facility and its first set of experiments have been manifested to fly to the International Space Station in September of 2017 on the SpaceX Dragon resupply vehicle’s flight SpaceX-13.





Now dubbed MISSE-FF (Material International Space Station Experiment Flight Facility), Alpha Space’s contract is good through at least June 30, 2024 (currently the authorized remaining lifetime of the station). Alpha Space’s plans call for a permanently-mounted tower that will hold multiple PECs at once. If the customers are there (some have already signed contracts), Alpha Space is ready to provide routine testing in the unparalleled environment of space. They expect to begin operations this year (2017).

Animation of Alpha Space's PEC deployment

Animation of Alpha Space’s PEC deployment – Source: Alpha Space

SpaceX Continues To Make History

SpaceX is no stranger to making commercial spaceflight history. They were the first private corporation to launch a liquid-fueled rocket into orbit, send a re-supply spacecraft to the International Space Station, and to land their first-stage rockets back on Earth (for potential re-use), among other milestones. They’re also on the cusp of providing transportation services for International Space Station crew members.

SpaceX Falcon 9 moments before landing on February 19, 2017

SpaceX Falcon 9 moments before landing on February 19, 2017 – Source: SpaceX

On February 19, 2017, SpaceX accomplished another major feat: They became the first private company to launch from the historic Launch Pad 39A at Kennedy Space Center.

Launch Pad 39A

SpaceX became the first commercial corporation to lease space and operate out of Kennedy Space Center when, in 2014, they signed a 20-year lease for the historic Launch Pad 39A. It was from this launch pad that Apollo 11 blasted off for the Moon, when Neil Armstrong and Buzz Aldrin became the first humans to step foot on our lunar neighbor. It also hosted the first Space Shuttle mission, as well as some 90 others. Now, and for at least the next two decades, it’s in the hands of SpaceX, further cementing the foothold that the private sector has made in the space program.

SpaceX and NASA CRS-10 mission patches

SpaceX and NASA CRS-10 mission patches – Source: Public Domain and SpaceX

Launch and Landing

At 9:39am EST, on February 19, SpaceX’s Falcon 9 rocket ignited and thundered into the clouds. The rocket was topped with the Dragon capsule, carrying more than 5,000 pounds (2,267 kg) worth of cargo destined for the International Space Station. Dragon arrived and successfully docked with the ISS a couple of days following launch.

Dr. Michelle Thaller, NASA astrophysicist and contributor to myriad space documentary programs, was at Sunday’s launch and graciously shared her experience with me. “Launches are always wonderfully, viscerally exciting,” she said. “The Falcon 9 has a wonderful, big, booming sound, similar to an Atlas, and it puts on a great fireworks show.”

But that wasn’t the only show in store for the lucky spectators in Florida that day. After shoving Dragon into orbit, the Falcon first stage began its 100-kilometer return trip back to Earth. In fewer than 10 minutes following lift-off, the first stage rocket re-emerged through the clouds and landed at Landing Zone 1, just a few miles away from the launch pad. Thaller described the period of suspense in between the launch and the Falcon landing, and said that in some ways there was more anticipation for the landing than there was for the launch.

[N]othing quite prepares you for what happens 7 minutes later, just as the adrenaline is wearing off. Silently, at first, this 230-foot first stage turns around and comes down out of the sky. Smoothly, surreally, a tower the size of a 15 story building just comes and sets itself down. Only once it’s down do you hear the double pop of a sonic boom. It sort of turns your stomach. Things that big are not supposed to just come out of the sky and land. It’s awesome.

Awesome, indeed. See for yourself:

As a kid, I remember watching cartoons that showed rockets landing on various planets. The rockets would turn themselves around and gently land engine-side down. I would always exclaim, “That’s not how rockets work! They burn up, or have parachutes attached and they land in the ocean! How silly.”

Yet, here we are.

I’ve often been jealous about being born too late to experience the race to the Moon. I’ve been somewhat depressed since watching the last Shuttle mission touch down in 2011. But when I take a step back and look at what is occurring today and what we have to look forward to, I can’t help but recognize what a wonderful time it is to be alive.

You can watch the full webcast of the launch on SpaceX’s YouTube channel.

7 Earth-Sized Worlds Discovered Orbiting Nearby Star

Artist's concept of the surface of TRAPPIST1-f.

Artist’s concept of the surface of TRAPPIST1-f. – Credit: NASA/JPL-Caltech

NASA held a press conference today, announcing an exciting new discovery: A record-breaking seven Earth-sized planets have been discovered orbiting a star located about 40 light years from Earth. Three of these planets are firmly located within what’s called the habitable zone–the area around a star that is likely to have rocky planets with liquid water.

The star is named TRAPPIST-1 (also known as 2MASS J23062928-0502285). It’s an ‘ultra-cool dwarf’ star, with approximately 8% of the mass and 11% of the radius of our Sun. Size-wise, this is approximately the difference between a basketball and a golfball.

The seven plants surrounding TRAPPIST-1 orbit much closer to their star than Earth does to the Sun. As well, these exoplanets are much closer to each other than the planets in our own system. You could stand on one of these planets and see the next closest one with a similar type of view that we have with the Moon here on Earth, and you could clearly make out the disc-shape of many of the other planets rather than mere points of light.

The discoveries were made using data from the Spitzer Space Telescope, which was launched in 2003. Although Spitzer wasn’t specifically designed to observe exoplanets, the suite of instruments it carries allows it to discover exoplanets in the same manner that the Kepler spacecraft uses. These observatories can discover exoplanets by precisely measuring dips in the light emitted from a star that coincides with a planet orbiting in-between that star and our vantage point and blocking a portion of the light that we can measure. Continued observations can determine orbital periods, distance from the star, and the number of exoplanets in a system. This data can be used to plot habitable zones.

During the press conference, the team stated that they had preliminary mass measurements for six of the planets, and they believe that one is likely to have a water-rich composition.

Artist's concept shows what each of the TRAPPIST-1 planets may look like, based on available data about their sizes, masses and orbital distances.

Artist’s concept shows what each of the TRAPPIST-1 planets may look like, based on available data about their sizes, masses and orbital distances. – Credit: NASA/JPL-Caltech

There currently isn’t a system for naming exoplanets in the way that bodies like asteroids are named, so they’re simply provided with alphabetic designations appended to their host stars’ name, with the designation ‘b’ being the closest to the star.

These planets orbit so close to their star that they’re likely tidally-locked in the same manner that the Moon is to the Earth. These planets would have permanent day and night sides.

One of the planets, Trappist-1c, is very similar in size to Earth and receives about the same amount of light as Earth receives from the Sun. It could very well have temperatures similar to those we have on Earth. Trappist-1f has a 9-day orbit and receives about as much light as Mars does. Trappist-1g is the largest planet in the system with an estimated radius 13% larger than Earth.

All of the planets are within a few times the distance between the Earth and the Moon of each other, and being so close to their star their orbits (their years) are about 1.5 Earth days for the closest planet and 20 days for the furthest.

Concept art for TRAPPIST-1 and its seven Earth-sized exoplanets.

Concept art for TRAPPIST-1 and its seven Earth-sized exoplanets. – Credit: NASA/JPL-Caltech

The next step, which is already ongoing, is to study their atmospheres and to look for water. This can be accomplished using a technique called transmission spectroscopy. We have observatories that can do this now, such as the Hubble Space Telescope, and the future James Webb Space Telescope (JWST) will be able to push these capabilities even further. JWST will be able to look for greenhouse gas content and determine the surface temperatures of these planets, as well as detect gases that are produced by life. It’s expected that the first cycle of observations of the JWST will include the TRAPPIST-1 system.

Thomas Zurbuchen, associate administrator of the agency’s Science Mission Directorate in Washington, referred to our moment in time as “the gold rush phase of exoplanet discovery.”  It was just in 1995 that the first exoplanet was discovered, he explained, and that thousands have been discovered since.

Following the announcement, the panel held a Q&A session. During the course of their answers, they explained that there was no indication of these planets having moons, but that if water was present there would be tidal activity resulting from the other planets. They said they expect substantial progress in determining the atmospheric composition of these exoplanets within the next 5 years, utilizing the Hubble Space Telescope and the James Webb Space Telescope after it begins operations in 2018. JWST’s transmission spectroscopy will cover the range needed to determine the potential for life.

One member asked if any attempts have been made to listen to the system with SETI-style instruments, to which there was a reply that SETI itself had listened to the system but hadn’t picked-up any signals.

One of the most interesting answers came from Zurbuchen, when he was asked when we could expect to construct a craft that could journey to this system. Rather than give an estimate in the number of years in the future we could expect such capabilities, he answered with the estimated “number of miracles” that are required before we get there. He explained that the JWST required 10 miracles to become possible. He likened the construction of a craft that could explore TRAPPIST-1 as requiring “100 miracles”, but that we shouldn’t be dissuaded, that to get there you have to “start inventing your way forward.” Some of the “miracles” require advancements in propulsion systems and radiation-protection, and that the good news was that substantial work is already being accomplished towards about 5-10 of these miracles. He said it’s about “leaning forward” and “not backing up”.

Discoveries like these are constant reminders of just how big and amazing our Universe is. We’re reminded that the night sky isn’t just full of points of light, but worlds, perhaps some of which might be very similar to our own.

A poster advertising a hypothetical planet-hopping trip in the Trappist-1 system

A poster advertising a hypothetical planet-hopping trip in the Trappist-1 system – Credit: NASA-JPL/Caltech

How NASA’s Shuttle Numbering System Worked

Space Shuttle program patch

Space Shuttle program patch

It has been nearly six years since NASA’s final shuttle launch ended an era, but I’m still just not ready to let it go. As I’ve written previously, I’ve dubbed my generation ‘the space shuttle generation’. Today, I want to tell you how the shuttles were numbered and explore whether or not the number scheme changed due to one NASA administrator’s triskaidekaphobia (the fear of the number 13).

Space Transportation System

The official name for the space shuttle program was Space Transportation System (abbreviated STS). The program was envisioned to be America’s routine link to orbit, designed to reuse many major components with the idea of a quick return to service and reduced costs. After a few unmanned test flights of the Enterprise prototype, shuttle Columbia became the first shuttle to complete an orbital mission with astronauts aboard (mission commander John W. Young and pilot Robert L. Crippen). This milestone flight carried the simple designation: STS-1. Subsequent missions were given the numbers STS-2 – STS-9. The mission that would have been numbered STS-10 was cancelled due to payload delays. So, you’d expect the next flight to be designated STS-11, right? Wrong. Try STS-41-B.

Shuttles Columbia, Challenger, Discovery, Atlantis, and Endeavour

Shuttles Columbia, Challenger, Discovery, Atlantis, and Endeavour – Public Domain

A New System

Beginning in 1984, NASA switched to a new flight numbering system. The change is credited to a growing complexity of the program’s launch manifest, as well as an anticipated increase in the number of flights and launch locations. The new system, while more complicated than the original system, isn’t that difficult to understand once you know the formula. The STS prefix was continued, followed by a two-digit number, followed by a letter.

Let’s break down STS-41-B:

The first number, 4, indicated which fiscal year the mission was to launch in (dropping the first three digits of the year). In this case, the year was 1984. The second digit, always a 1 or a 2, indicated the launch location: 1 for Kennedy Space Center and 2 for Vandenberg Air Force Base. Since STS-41-B launched from Kennedy Space Center, it carried that second digit of 1. (Note: Vandenberg was never used to launch shuttle missions, and therefore the ‘2’ digit was never utilized). The final part of the scheme, the letter, indicated which planned launch it was for that fiscal year. In our case, B, indicated it was the second intended launch for that year. Keep in mind, the letter designation was assigned for the planned sequence.

STS-41-B = Space Transport System – Fiscal Year 1984, launching from Kennedy Space Center – the second mission of the fiscal year.

Now let’s decode one to see if we got it:

STS-61-A. Using what we learned above, we know that this was the first mission planned for fiscal year 1986 and launching from Kennedy Space Center. Easy!

Return

The new numbering scheme didn’t last for long. On January 28, 1986, STS-51-L, ended in tragedy, as the Challenger shuttle disintegrated 73 seconds after take-off. There wouldn’t be another shuttle launch for 2 years and 8 months, while NASA rigorously reviewed every aspect of the shuttle program to determine the cause of the catastrophe and to greatly increase safety standards before a return to flight. In the interest of safety, fewer launches would be planned each year. As a result, plans to add Vandenberg as a launch site for the shuttle were abandoned. There was no longer a need for the more complex numbering system. When the shuttle returned to flight on September 29, 1988, that mission was designated STS-26. For the remainder of the program, the simplified numbering system was utilized.

Firing Room 1 configured for space shuttle launches - Source:

Firing Room 1 configured for space shuttle launches – Source: NASA

Rumors of Triskaidekaphobia

At the beginning, I mentioned that the fear of the number 13 might have played a part in the numbering system change. That fear has a name, and it’s a doozy: triskaidekaphobia (pronounce it like this: trice-kai-dek-aphobia). Some, including astronauts (like Paul Weitz) and other NASA employees, believe the numbering system changed, at least in some part, due to then-NASA Administrator James Beggs’s fear of the number 13. Not far from anyone within NASA’s mind was the perilous flight of Apollo 13. Apollo 13 launched at 13:13:00 Houston time, and suffered an oxygen tank explosion on April 13. While it’s possible this played into the numbering system change, NASA officials deny it.

This didn’t stop the crew of STS-41-C from having some fun. Had the numbering scheme not changed, their mission would have been designated STS-13. Coincidentally, it was originally scheduled to launch of Friday the 13th of April, 1984 (the launch date was ultimately changed to April 4, but it returned on that Friday the 13th).

“[The crew] created their own “Black Cat” mission patch. Former crewmember James “Ox” Van Hoften recalls, “We flew around with our STS-13 patch on, and that was a lot of fun. We ended up landing on Friday the 13th, so that was pretty cool.”

The 'alternative' patch designed to make light of the triskaidekaphobia surrounding this mission.

The ‘alternative’ patch designed to make light of the triskaidekaphobia surrounding this mission. Source: Wikipedia / CC

And there you have it. Just like so many things associated with the space program, even the most overlooked items often have fascinating stories behind them.

In Memoriam: Apollo 1

Today marks the sad anniversary of the day we lost the crew of Apollo 1.

On January 27, 1967, heroes Virgil I. “Gus” Grissom, Edward H. White II, and Roger B. Chaffee, were conducting a launch rehearsal test in an Apollo Command Module. Their mission was to be the first crewed mission of the Apollo program, which would ultimately put humans on the Moon. These three men paid the ultimate sacrifice so that humanity could spread its reach into the cosmos.

Apollo 1 Mission Patch

Apollo 1 Mission Patch – Credit: NASA

Virgil Ivan “Gus” Grissom

Virgil "Gus" Grissom

Virgil “Gus” Grissom – Source: NASA/Public Domain

Gus Grissom was born on April 3, 1926. He joined the United States Army straight out of high school, in the midst of Word War II. His early military career was spent as a clerk at Boca Raton Army Airfield. Grissom was discharged after the war ended, a few months after marrying his wife, Betty Moore. Utilizing his G.I. Bill, he earned a Bachelor of Science in Mechanical Engineering from Purdue University. Upon graduation, Grissom re-enlisted into the newly-formed United States Air Force, and began flight training. He received his pilot wings in 1951. Grissom flew 100 combat missions during the Korean War. He requested to fly another 25 flights in Korea, but his request was denied. For his service, he was promoted to First Lieutenant and was awarded the Distinguished Flying Cross.

Grissom went on to earn a Bachelor of Science in Aeromechanics from the U.S. Air Force Institute of Technology, before enrolling at the USAF Test Pilot school. He was assigned as a test pilot of the fighter branch at Wright-Patterson AFB.

In 1958, Grissom received a “Top Secret”-classified letter, instructing him to report to an address in Washington D.C. in civilian clothing. He was ultimately one of 110 military test pilots who were invited to learn more about the space program and Project Mercury. Though he knew competition would be extremely fierce, he submitted to the program and began a rigorous set of physical and mental examinations. On April 13, 1959, Grissom received notice that he had been selected as one of the seven astronauts for Project Mercury.

Gus Grissom became the second American in space, when his ‘Liberty Bell 7’ capsule flew a 15 minute and 37 second sub-orbital flight. Grissom flew a second flight as a member of Project Gemini, in March of 1965, becoming the first NASA astronaut with two spaceflights under his belt.

His third flight would have him as commander of the Apollo 1 mission.

Roger Bruce Chaffee

Roger Chaffee

Roger Chaffee – Source: NASA/Public Domain

Roger Bruce Chaffee was born on February 15, 1935 in Grand Rapids, Michigan. In his youth, he was the quintessential Boy Scout. He excelled in the program, earning many badges that typically weren’t earned by members as young as he was. He continued in the program as an Eagle Scout, earning ten more merit badges. His participation in the scouts was cited as a benefit to his astronaut training that he’d participate in years later–particularly during survival training missions.

In his youth, he gained an early love of flying and had a natural affinity for mechanical and artistic skills. Chaffee graduated in the top fifth of his high school class and accepted a Naval Reserve Officers Training Corps scholarship, using it to enroll in the Illinois Institute of Technology. After his first year, he combined “his love of flying with his aptitude in science and mathematics in order to pursue a degree in aeronautical engineering.” He applied for a transfer and was accepted into Purdue University, to enter its renowned aeronautical engineering program. As a junior at Purdue, he met his future wife, Martha Horn.

Chaffee earned his BS in aeronautical engineering in June, 1957, and completed his Naval training in August of the same year. He began military flight training and learned to fly the T-34, T-28, and F9F Cougar, advancing quickly through the programs. He earned his wings in 1959 and flew numerous missions including reconnaissance duties, among them taking aerial photography of the Cuban missile buildup. Chaffee continued to work hard towards advancement.

Ever since the first seven Mercury astronauts were named, I’ve been keeping my studies up… At the end of each year, the Navy asks its officers what type of duty they would aspire to. Each year, I indicated I wanted to train as a test pilot for astronaut status.” (On Course to the Stars – C. Chrysler/R. Chaffee)

When NASA began recruiting for Astronaut Group 3, Chaffee was included as one of the initial pool of 1,800 applicants. He continued to work on his Master’s in engineering, while undergoing the multitude of invasive tests conducted on astronaut candidates. On October 18, 1963, Chaffee was officially admitted to the astronaut corps along with 13 other pilots.

During the Gemini program, Chaffee served as capsule communicator (CAPCOM) for the Gemini 3 and 4 missions.

Apollo 1 would have been his first space mission.

Edward Higgins “Ed” White II

Edward Higgens White

Edward Higgens White – Source: Public Domain

Ed White was born on November 14, 1930 in San Antonio, Texas. Like Chaffee, White was also active in the Boy Scouts of America. His father was a major general in the Air Force, who nurtured his son’s interest in flying. After graduating high school in 1948, he was accepted into the United States Military Academy at West Point where he earned a Bachelor of Science degree. While at West Point, he met Patricia Finegan, whom he would marry in 1953. He was commissioned as a Second Lieutenant in the Air Force when he began his flight training. After earning his wings, he was assigned to the 22nd Fighter Day Squadron at Bitburg Air Base in West Germany. He spent three and a half years flying missions in defense of NATO.

White was an excellent athlete, and record-setting hurdler. He missed a chance to join the 1952 U.S. Olympic team by only the narrowest of margins.

White returned to the U.S. in 1958 and enrolled in the University of Michigan. There, he earned a Master of Science degree in Aeronautical Engineering, before entering test pilot training in 1959. After completing the program, he was transferred to Wright-Patterson Air Force base, where he served as an experimental test pilot and training captain in the Aeronautical Systems Division. During his military career, he flew more than 3,000 hours and earned the rank of Lieutenant Colonel.

White was one of the nine men chosen for Astronaut Group 2, and was selected to fly into space on the Gemini 4 mission. That mission would have White and Command Pilot James McDivitt spending four days in Earth orbit, from June 3-7, 1965. During the mission, White became the first American to conduct a spacewalk, as he enjoyed 21 minutes outside of the Gemini capsule. White had to essentially be ordered back into the craft, remarking that re-entering the capsule was the “saddest moment of his life”.

Ed White, conducting America's first spacewalk

Ed White, conducting America’s first spacewalk – Source: NASA / James McDivitt

Upon Gemini 4’s return to Earth, “President Johnson promoted White to the rank of lieutenant colonel and presented him with the NASA Exceptional Service Medal and the U.S. Air Force Senior Astronaut Wings.

Ed White’s next mission assignment was as senior pilot for Apollo 1.

Apollo 1

Apollo 1, initially designated AS-204, was slated to be the first crewed mission of the Apollo program which carried the ultimate goal of landing humans on the Moon and returning them safely back to Earth. Gus Grissom, Roger Chaffee, and Ed White carried the honors of being assigned the first mission of the program. They were to spend up to 14 days in Earth orbit, while testing many systems implemented with the new program.

On January 27, 1967, the three crew members were conducting a rehearsal for their upcoming mission. An electric spark ignited the high pressure pure oxygen environment inside the capsule, and the flammable materials inside quickly caught fire. The hatch was sealed, and the pressure differential between the inside and outside of the capsule made it impossible for the crew to escape. The three heroes didn’t have a chance to make it out alive.

Roger Chaffee, Gus Grissom, and Ed White gave their lives that day, becoming the first casualties of the U.S. space program. They gave them not only to their country, but to all of humanity. Their sacrifice made future flights safer and successful.

A plaque in their honor is affixed to the launch pedestal of Launch Complex 34, the site of the fire. It reads:

IN MEMORY

OF

THOSE WHO MADE THE ULTIMATE SACRIFICE

SO OTHERS COULD REACH FOR THE STARS

 

AD ASTRA PER ASPERA

(A ROUGH ROAD LEADS TO THE STARS)

 

GOD SPEED TO THE CREW

OF

APOLLO 1

 

Apollo 1 Crew. Left to right: White, Grissom, Chaffee - Public Domain/NASA

Apollo 1 Crew. Left to right: White, Grissom, Chaffee – Public Domain/NASA

 

NASA's Penguin Patch

How An Imaginary Constellation Ended Up On An Official NASA Mission Patch

There are some great stories behind the patches that NASA issues for each of its missions, and the latest one I have learned about is no exception. I picked the story up from former astronaut, Rhea Seddon, via her newsletter and blog. (Seddon was featured in this previous post about NASA’s first female astronauts.)

 

STS-41-D - The Penguin Patch

STS-41-D Mission Patch – Source: NASA

STS-41-D was Space Shuttle Discovery’s first mission. Flying that mission were: Commander Henry W. Hartsfield Jr., Michael L. Coats, Richard M. Mullane, Steven A. Hawley, Judy Resnik, and Charles D. Walker. The launch was originally scheduled for June 26, 1984, but had to be aborted six seconds prior to launch. The mission finally launched two months later on August 30.

The patch bears the icon of the ship Discovery, one of the three ships in the fleet that founded Jamestown, Virginia. Around the outer edge are the last names of the crew members. Shuttle Discovery is shown with a large solar array rising from the payload bay. This array was part of the OAST-1 payload, a project to demonstrate the feasibility of large-scale solar arrays in space. In the background is a field containing twelve stars: symbolic of STS-41-D being NASA’s twelfth Shuttle flight.

But there’s a bit more to the story of those twelve stars. According to Seddon, Shuttle program patches had to be approved by the Director of Flight Crew Operations, a post held at that time by George Abbey. As the story goes, her husband, Robert “Hoot” Gibson (also an astronaut), had something to do with the design of the patch for STS-41-D. He presented it to Abbey, only to have it denied. Why? Because, Mr. Abbey said:

“There isn’t a penguin on it.”  

Hoot replied, “Why a penguin?”  

“Because there has never been one.”  

So, Hoot hurried back to the office in dismay to see what the crew could create.  He returned a few days later with a modified patch.  

“Where is the penguin?”  

“Here it is.  Those stars at the top are from the constellation Penguinus Australis.”  

Whether Abbey was convinced or not, the design was approved. The constellation, Penguinius Australis, of course, was a complete fabrication. 

STS-41-D Crew

The STS-41D mission crew: (seated left to right) Richard M. (Mike) Mullane, mission specialist; Steven A. Hawley, mission specialist; Henry W. Hartsfield, commander; and Michael L. (Mike) Coats, pilot. Standing in the rear are Charles D. Walker, payload specialist; and Judith A. (Judy) Resnik, mission specialist. – Source: NASA

The Penguin Patch joins a long list of interesting stories about some of NASA’s most overlooked gems. 

OSIRIS-REx – A Sample Return Mission To Asteroid Bennu

Tomorrow, September 8, 2016, NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) is slated to launch from Cape Canaveral. It will take two years for the craft to reach its destination, the asteroid Bennu, where it will collect a sample and return it to Earth. The mission is a partnership between the University of Arizona, NASA’s Goddard Space Flight Center and the Lockheed Martin Company.

OSIRIS-REx Mission Logo - Source: NASA

OSIRIS-REx Mission Logo – Source: NASA

The OSIRIS-REx mission will send a spacecraft to 101955 Bennu (hereafter referred to simply as Bennu), a potentially Earth-impacting asteroid with an average diameter of 492 meters (1,614 ft; 0.306 mi). The mission has five primary science objectives (the mission, OSIRIS-REx, takes its name from an acronym of these objectives):

• Origins: Return and analyze a pristine carbon rich
asteroid sample
• Spectral Interpretation: Provide ground truth or
direct observations for telescopic data of the
entire asteroid population
• Resource Identification: Map the chemistry and
mineralogy of a primitive carbon rich asteroid
• Security: Measure the effect of sunlight on the
orbit of a small asteroid, known as the Yarkovsky
effect—the slight push created when the asteroid
absorbs sunlight and re-emits that energy as heat
• Regolith Explorer: Document the regolith (layer
of loose, outer material) at the sampling site at
scales down to the sub-centimeter

The $800-million (not including launch vehicle costs) mission budget will support the program through the return of the sample capsule in 2023, and two years of analysis and cataloging.

The spacecraft, built by Lockheed Martin Space Systems Company at its facility near Denver, Colorado, is 6.2 meters (20.25 feet) long with its solar arrays deployed, and 2.43 meters (8 feet) by 2.43 meters (8 feet) wide. It’s 3.15 meters (10.33 feet) tall. The total weight of the spacecraft, including fuel, is 2,110 kilograms (4,650 pounds)–unfueled, it weighs 880 kilograms (1,940 pounds). It boasts two solar panel generators that produce between 1,226 watts and 3,000 watts of electrical power depending on its distance from the Sun.

Following its September 8, 2016 launch, the spacecraft will undergo an Earth flyby in September of 2017, before arriving at Bennu in August of 2018. According to the program fact sheet, “[t]he spacecraft will begin a detailed survey of Bennu two months after slowing to encounter Bennu. The process will last over a year, and, as part of it, OSIRIS-REx will map potential sample sites. The sample is expected to occur in July of 2020, when the craft’s sampling arm will contact Bennu’s surface, release a burst of nitrogen gas, and capture the resulting particles. It’s expected to collect up between 60 grams (2 ounces) and 2 kilograms (4.4 pounds). After the sample is taken, OSIRIS-REx’s Sample Return Capsule will wait for a proper alignment with Earth for the return trip home. The sample is expected to re-enter Earth’s atmosphere on September 24, 2023–just over seven years after its 2016 launch.

OSIRIS-REx Survey Animation - Source: University of Arizona

OSIRIS-REx Survey Animation – Source: University of Arizona

Why Bennu?

In addition to Bennu being a good candidate to study the building blocks of our solar system (“An uncontaminated asteroid sample from a known source would enable precise analyses, revolutionizing our understanding of the early solar system, and cannot be duplicated by spacecraft-based instruments or by studying meteorites“), I mentioned above that Bennu is a “potentially Earth-impacting asteroid”. The chances of Bennu impacting Earth are slim–0.037%, and that’s not even until the period between 2175 – 2196–but it still serves as a good model to use to understand both the hazards and resources that coincide with near-Earth asteroids.

Here’s to a successful launch tomorrow, and a successful mission over the next seven years!

Godspeed OSIRIS-REx! Ad Astra!

Want more information on the mission? The NASA Press Kit has a wealth of information.

Looking Back on America's First Female Astronauts

NASA Astronaut Group 8 class logo

NASA Astronaut Group 8 class logo – Credit: NASA

On January 16, 1978, NASA selected its first group of new astronauts since 1969. This new class of 35 astronaut candidates was named Astronaut Group 8, but colloquially referred to as the “TFNG: 35 New Guys”1 While there were 35 members of the class, for the first time they couldn’t all be referred to as “guys”. Astronaut Group 8 would produce many firsts in the way of diversity: the first African-American in space, the first Asian-American in space, and the first Jewish-American, among others. Today we highlight the six women of Astronaut Group 8: Shannon W. Lucid, Margaret Rhea Seddon, Kathryn D. Sullivan, Judith A. Resnik, Anna L. Fisher and Sally K. Ride. These would become America’s first female space explorers.

From left to right are Shannon W. Lucid, Margaret Rhea Seddon, Kathryn D. Sullivan, Judith A. Resnik, Anna L. Fisher, and Sally K. Ride. NASA selected all six women as their first female astronaut candidates in January 1978, allowing them to enroll in a training program that they completed in August 1979.

From left to right are Shannon W. Lucid, Margaret Rhea Seddon, Kathryn D. Sullivan, Judith A. Resnik, Anna L. Fisher, and Sally K. Ride. NASA selected all six women as their first female astronaut candidates in January 1978, allowing them to enroll in a training program that they completed in August 1979. – Credit: NASA

Shannon W. Lucid

Shannon Lucid in 1978

Shannon Lucid in 1978 – Source: NASA

Out of the six women of Astronaut Group 8, Shannon Lucid spent more time in space and flew on the most spaceflights. By the time she retired from NASA, she had flown to space on five separate flights and held a number of NASA spaceflight records as a result of her prolonged stay on the now-extinct Russian space station, Mir; Lucid was the only American woman that had the honor of serving upon Mir. In 1996, she became the first woman to receive a Congressional Space Medal of Honor which are awarded to astronauts “who in the performance of his duties has distinguished himself by exceptionally meritorious efforts and contributions to the welfare of the Nation and of mankind”. (Uhh, “his” and “himself”? Ahem!)  Of the six women in her class, Lucid was the only mother at the time of selection into the astronaut program (though, she wasn’t the first mother in space… we’ll get to that in a minute).

Lucid spent a total of 223 days, 2 hours, and  50 minutes in space during her career.

After her tenure as an astronaut, Lucid served as NASA’s Chief Scientist from February 2002 until September 2003. She also served as CAPCOM during numerous Space Shuttle and International Space Station crews. She retired from NASA in 2012.

Margaret Rhea Seddon

Margaret Rhea Seddon in 1978

Margaret Rhea Seddon in 1978 – Source: NASA

Margaret Rhea Seddon was the first medical doctor to travel to space. During her years as an astronaut, she flew on three separate missions. Her medical expertise was invaluable for the numerous experiments that she worked on during her missions in space, as well as the research she conducted on Earth. In 1981, Seddon married fellow Group 8 astronaut Robert L. Gibson and the two became the first active duty married astronauts.

During her three space flights, Seddon spent a total of 30 days, 2 hours, and 21 minutes in space. Her responsibilities during her 19 years at NASA included: helicopter search and rescue physician, serving on the NASA Life Sciences Advisory Committee and the NASA and International Bioethics Task Forces, and in-flight medical operations. While an active-duty astronaut, she continued to work part-time as an emergency room physician in various hospitals.

Seddon retired from NASA in 1997, remaining active in the medical community.

Kathryn D. Sullivan

Kathryn D. Sullivan

Kathryn D. Sullivan in 1990 – Source: NASA

Kathryn D. Sullivan made history in 1984 when she became the first American woman to conduct an EVA (extravehicular activity), spacewalking for 3-1/2 hours to demonstrate the feasibility of satellite refueling. This accomplishment came on her very first trip into space, during STS-41-G. In total, Sullivan visited space during three missions: STS-41-G, STS-31, and STS-45. STS-31 was an especially important mission, as they carried the Hubble Space Telescope into orbit, deploying it at an orbit altitude record at the time, of 612 kilometers (380 miles). Her work on STS-45, her final space voyage, included a number of research experiments as part of the Spacelab mission dedicated to the NASA ‘Mission to Planet Earth’. The results of that research provided a wealth of information about Earth’s climate and atmosphere.

During her three flights, she spent a total of 22 days, 4 hours, and 49 minutes in space.

In 2014, Sullivan was confirmed by the U.S. Senate to serve as the Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator.

Anna L. Fisher

Anna Lee Fisher in 1980

Anna Lee Fisher in 1980 – Credit: John Bryson

In 1984, Anna Lee Fisher became the first mother in space. You might not immediately realize the significance of this, but I think it’s an important first. In the 1980s women were still fighting to be considered equals among men in the workplace. Much more so than now, moms were generally expected to stay home and raise the children while the fathers worked. So here you have a mother that not only does everything a mother does, but she works hard, trains to become an astronaut, and travels to space. Cracking the glass ceiling? More like smashing through Earth’s atmosphere!

Fisher is also extremely educated: she earned a Bachelor of Science in Chemistry in 1971, a Doctor of Medicine in 1976, and also earned a Master of Science in Chemistry in 1987–all from UCLA.

During her single flight, she spent 7 days, 23 hours, and 45 minutes in space.

As of 2014, Fisher was listed as a management astronaut with NASA and was working on NASA’s next generation crewed space program, among other duties.

(As an aside, the image of Anna Fisher above is one of my all-time favorite space images. The look of wonder and courage in her eyes stimulates some of the same emotions I had as a child watching these people take their trips into the skies in their shuttles. It represents a moment in our collective history, in which were just beginning to establish ourselves in a world that was much bigger than we had ever known before.)

Sally K. Ride

Sally Ride in 1984

Sally Ride in 1984 – Source: NASA

Sally Kristen Ride made history on June 18, 1983, when she became the first American woman in space (Russia put the first two women into space: Valentina Tereshkova and Svetlana Savitskaya). On that mission, STS-7, she also became the first woman to operate the shuttle’s robotic arm and the first to use it to retrieve a satellite from orbit. She flew a second flight in 1984, STS-41-G, with fellow Group 8 member Kathryn Sullivan.

During her two missions, she spent a total of 14 days, 7 hours, and 46 minutes in space.

In an interview with USA Today:

 In elementary school, there (were) lots of girls who were interested in science, and that’s true today. For whatever reason, I didn’t succumb to the stereotype that science wasn’t for girls. I got encouragement from my parents. I never ran into a teacher or a counselor who told me that science was for boys. A lot of my friends did.

 

Following the Challenger disaster, Ride served as a member of the Presidential Commission that investigated the accident. After NASA, Ride founded Sally Ride Science, a non-profit organization with a mission to “inspire young people in science, technology, engineering, and math (STEM) and to promote STEM literacy.”

Ride was always humble about it, but she was, and still is, a true inspiration to millions.

Ride passed away on July 23, 2012, while battling pancreatic cancer.

Judith A. Resnik

Judith Resnik in 1978

Judith Resnik in 1978 – Source: NASA

Not all of these stories have as happy of an ending as one would hope. On her second Shuttle mission, Judy Resnik was assigned to STS-51-L aboard Challenger. 73 seconds after lift-off, Challenger’s rocket boosters exploded and the orbiter broke apart. All seven members of the crew lost their lives.

Resnik earned a Bachelor of Science degree in Electrical Engineering from Carnegie-Mellon University in 1970, and a Doctorate in Electrical Engineering from University of Maryland in 1977.

Resnik’s first flight (STS-41-D), in 1984, made her the second American female in space, and the first Jewish-American in space. That mission had the crew deploy three satellites into orbit, as well as deploy the OAST-1 solar array. The array, once unfolded, was 13 feet wide and 102 feet long–“it’s up, and it’s big!” she reported to mission control. When folded, it was a mere 7 inches deep. The array demonstrated the feasibility of large lightweight solar arrays in space. Her total time in space as a result of that mission was 6 days, 56 minutes, and 4 seconds.

Resnik was posthumously awarded the Congressional Space Medal of Honor.

Judy Resnik aboard orbiter Discovery, during STS-41-D

Judy Resnik aboard orbiter Discovery, during STS-41-D – Source: NASA Spaceflight Forums

Legacy

NASA's first female astronauts

NASA’s first female astronauts  – From left to right: Seddon, Sullivan, Resnik, Ride, Fisher, Lucid- Source: NASA

As of May 2015, nearly 60 women have flown into space. Along with Russian cosmonauts Valentina Tereshkova and Svetlana Savitskaya, these are the women that demolished barriers and showed the world that anyone that had the drive and work ethic required could make it in any industry that they desired to be a part of.

  1. Inside the space program, TFNG was a play on an off-color military phrase.